Chọn phương án đúng trong bốn phương án đã cho trong mỗi câu sau:
LG a
$\sqrt 3 \sin {15^o} + \cos {15^o} - \sqrt 2 $ bằng:
(A) $\sqrt 3 $ (B) $\sqrt 2 $
(C) 1 (D) 0
Lời giải chi tiết:
$\begin{array}{l}
\sqrt 3 \sin {15^0} + \cos {15^0} - \sqrt 2 \\
= 2\left( {\frac{{\sqrt 3 }}{2}\sin {{15}^0} + \frac{1}{2}\cos {{15}^0}} \right) - \sqrt 2 \\
= 2\left( {\cos {{30}^0}\sin {{15}^0} + \sin {{30}^0}\cos {{15}^0}} \right) - \sqrt 2 \\
= 2\sin \left( {{{15}^0} + {{30}^0}} \right) - \sqrt 2 \\
= 2\sin {45^0} - \sqrt 2 \\
= 2.\frac{{\sqrt 2 }}{2} - \sqrt 2 \\
= 0
\end{array}$
Chọn D.
LG b
${1 \over {\sin {\pi \over 9}}} - {1 \over {\sqrt 3 \cos {\pi \over 9}}}$ bằng:
(A) $\sqrt 3 $ (B) ${2 \over {\sqrt 3 }}$
(C) ${4 \over {\sqrt 3 }}$ (D) $ - 2\sqrt 3 $
Lời giải chi tiết:
$\begin{array}{l}
\frac{1}{{\sin \frac{\pi }{9}}} - \frac{1}{{\sqrt 3 \cos \frac{\pi }{9}}}\\
= \frac{{\sqrt 3 \cos \frac{\pi }{9} - \sin \frac{\pi }{9}}}{{\sqrt 3 \cos \frac{\pi }{9}\sin \frac{\pi }{9}}}\\
= \frac{{2\left( {\frac{{\sqrt 3 }}{2}\cos \frac{\pi }{9} - \frac{1}{2}\sin \frac{\pi }{9}} \right)}}{{\frac{{\sqrt 3 }}{2}.2\cos \frac{\pi }{9}\sin \frac{\pi }{9}}}\\
= \frac{{2\left( {\sin \frac{\pi }{3}\cos \frac{\pi }{9} - \cos \frac{\pi }{3}\sin \frac{\pi }{9}} \right)}}{{\frac{{\sqrt 3 }}{2}.\sin \frac{{2\pi }}{9}}}\\
= \frac{{2\sin \frac{{2\pi }}{9}}}{{\frac{{\sqrt 3 }}{2}.\sin \frac{{2\pi }}{9}}}\\
= \frac{4}{{\sqrt 3 }}
\end{array}$
Chọn C.
Chủ đề 2: Giao cầu
Thơ duyên - Xuân Diệu
Chủ đề 4: Chiến tranh bảo vệ Tổ quốc và chiến tranh giải phóng dân tộc trong lịch sử Việt Nam (trước Cách mạng tháng Tám năm 1945)
Chủ đề 1: Vai trò, tác dụng của môn bóng chuyền đối với sự phát triển thể chất - một số điều luật thi đấu môn bóng chuyền
Tải 10 đề kiểm tra 15 phút - Chương VII - Hóa học 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11