Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Tìm tiệm cận đứng và tiệm cận ngang của đồ thị các hàm số sau:
LG a
\(y = {{x + 1} \over {2x + 1}}\)
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{x + 1}}{{2x + 1}}\\
= \mathop {\lim }\limits_{x \to + \infty } \frac{{1 + \frac{1}{x}}}{{2 + \frac{1}{x}}} = \frac{1}{2}\\
\mathop {\lim }\limits_{x \to - \infty } y = \frac{1}{2}
\end{array}\)
Nên \( y = \frac{1}{2}\) là đường TCN của ĐTHS.
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ + }} \frac{{x + 1}}{{2x + 1}} = + \infty \\
\mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ - }} y = - \infty
\end{array}\)
Nên \( x =- \frac{1}{2}\) là đường TCĐ của ĐTHS.
Vậy,
Đường thẳng \(x = -{1 \over 2}\) là tiệm cận đứng của đồ thị.
Đường thẳng \(y = {1 \over 2}\) là tiệm cận ngang của đồ thị.
LG b
\(y = 4 + {1 \over {x - 2}}\)
Lời giải chi tiết:
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \left( {4 + \frac{1}{{x - 2}}} \right) = + \infty \\
\mathop {\lim }\limits_{x \to {2^ - }} y = - \infty
\end{array}\)
Nên đường thẳng x = 2 là tiệm cận đứng của đồ thị.
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( {4 + \frac{1}{{x - 2}}} \right) = 4\\
\mathop {\lim }\limits_{x \to - \infty } y = 4
\end{array}\)
Nên đường thẳng y = 4 là tiệm cận ngang của đồ thị.
LG c
\(y = {{\sqrt {{x^2} + x} } \over {x - 1}}\)
Lời giải chi tiết:
Vì \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } {{x\sqrt {1 + {1 \over x}} } \over {x - 1}} \)
\(= \mathop {\lim }\limits_{x \to + \infty } {{\sqrt {1 + {1 \over x}} } \over {1 - {1 \over x}}} = 1\)
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } {{ - x\sqrt {1 + {1 \over x}} } \over {x - 1}} \)
\(= \mathop {\lim }\limits_{x \to - \infty } {{ - \sqrt {1 + {1 \over x}} } \over {1 - {1 \over x}}} = - 1\)
Nên đường thẳng y = 1 là tiệm cận ngang của đồ thị (khi \(x \to + \infty \)) và đường thẳng y = -1 là tiệm cận ngang của đồ thị (khi \(x \to - \infty \)).
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {{x^2} + x} }}{{x - 1}} = + \infty \\
\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\sqrt {{x^2} + x} }}{{x - 1}} = - \infty
\end{array}\)
Nên đường thẳng \(x=1\) là TCĐ của ĐTHS.
LG d
\(y = {{\sqrt {x + 3} } \over {x + 1}}\)
Lời giải chi tiết:
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{\sqrt {x + 3} }}{{x + 1}} = + \infty \\
\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{\sqrt {x + 3} }}{{x + 1}} = - \infty
\end{array}\)
Nên đường thẳng \(x=-1\) là TCĐ của ĐTHS.
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {x + 3} }}{{x + 1}}\\
= \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {\frac{1}{x} + \frac{3}{{{x^2}}}} }}{{1 + \frac{1}{x}}} = 0
\end{array}\)
Nên đường thẳng y = 0 là tiệm cận ngang của đồ thị (khi \(x \to + \infty \)).
Bài 12. Thiên nhiên phân hóa đa dạng (tiếp theo)
Đề kiểm tra học kì 2
Unit 15. Women in Society
CHƯƠNG VI. SÓNG ÁNH SÁNG
Unit 2. Cultural Diversity