ĐẠI SỐ VÀ GIẢI TÍCH - SBT TOÁN 11 NÂNG CAO

Bài 1.38 trang 14 SBT Đại số và Giải tích 11 Nâng cao

Đề bài

Số đo của một trong các góc của tam giác vuông ABC là nghiệm của phương trình

\({\sin ^3}x + \sin x\sin 2 x - 3{\cos ^3}x = 0\)

Chứng minh ABC là tam giác vuông cân.

Lời giải chi tiết

Giả sử một góc của tam giác vuông ABC có số đo độ thỏa mãn phương trình đã cho.

Ta viết phương trình đã cho thành

\({\sin ^3}x + 2{\sin ^2}x\cos x - 3{\cos ^3}x = 0\)        (1)

\(({0^o} < x \le {90^o})\)

Dễ thấy \(x = {90^o}\) không phải nghiệm của phương trình, vậy \(\cos x \ne 0\)

Chia 2 vế phương trình cho \({\cos ^3}x\) được :

(1)\( \Leftrightarrow {\tan ^3}x + 2\tan x - 3 = 0 \)

\(\Leftrightarrow \left( {\tan x - 1} \right)\left( {{{\tan }^2}x + 3\tan x + 3} \right) = 0\)

Vì phương trình \({\tan ^2}x + 3\tan x + 3 = 0\) vô ngiệm , nên (1)\( \Leftrightarrow \tan x = 1\).

Kết hợp với điều kiện \({0^o} < x < {90^o}\) ta thấy chỉ có \(x = {45^o}\) là thỏa mãn.

Từ đó suy ra tam giác ABC là tam giác vuông cân.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved