Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
LG a
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
\(y = {x^3} - 6{x^2} + 9x\)
Lời giải chi tiết:
+) TXĐ: \(D = \mathbb{R}\).
+) Chiều biến thiên:
\(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ,\mathop {\lim }\limits_{x \to - \infty } y = - \infty \)
\(\begin{array}{l}y' = 3{x^2} - 12x + 9\\y' = 0 \Leftrightarrow 3{x^2} - 12x + 9 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\end{array}\)
BBT:
Hàm số đồng biến trên \(\left( { - \infty ;1} \right)\) và \(\left( {3; + \infty } \right)\).
Hàm số nghịch biến trên \(\left( {1;3} \right)\).
Hàm số đạt cực đại tại \(x = 1,{y_{CD}} = 4\)
Hàm số đạt cực tiểu tại \(x = 3,{y_{CT}} = 0\).
+) Đồ thị:
\(\begin{array}{l}y'' = 6x - 12\\y'' = 0 \Leftrightarrow 6x - 12 = 0\\ \Leftrightarrow x = 2 \Rightarrow y\left( 2 \right) = 2\end{array}\)
Điểm uốn \(I\left( {2;2} \right)\).
Đồ thị hàm số cắt trục tung tại điểm \(\left( {0;0} \right)\).
Điểm cực đại \(\left( {1;4} \right)\) và điểm cực tiểu \(\left( {3;0} \right)\).
Phương trình hoành độ giao điểm:
\(\begin{array}{l}{x^3} - 6{x^2} + 9x = 0\\ \Leftrightarrow x\left( {{x^2} - 6x + 9} \right) = 0\\ \Leftrightarrow x{\left( {x - 3} \right)^2} = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 3\end{array} \right.\end{array}\)
Đồ thị cắt trục hoành tại điểm \(\left( {0;0} \right)\) và tiếp xúc trục hoành tại điểm \(\left( {3;0} \right)\).
LG b
Chứng minh rằng điểm uốn của đường cong (C) là tâm đối xứng của nó
Lời giải chi tiết:
Công thức chuyển hệ tọa độ theo véc tơ \(\overrightarrow {OI} \) là: \(\left\{ \begin{array}{l}x = X + 2\\y = Y + 2\end{array} \right.\)
Phương trình đường cong trong hệ tọa độ IXY là:
\(\begin{array}{l}Y + 2 = {\left( {X + 2} \right)^3} - 6{\left( {X + 2} \right)^2} + 9\left( {X + 2} \right)\\ \Leftrightarrow Y + 2 = {X^3} + 6{X^2} + 12X + 8\\ - 6{X^2} - 24X - 24 + 9X + 18\\ \Leftrightarrow Y + 2 = {X^3} - 3X + 2\\ \Leftrightarrow Y = {X^3} - 3X\end{array}\)
Đây là hàm số lẻ nên đồ thị nhận \(I\) làm tâm đối xứng.
LG c
Với các giá trị nào của m, đường thẳng y = m cắt (C) tại 3 điểm phân biệt ?
Lời giải chi tiết:
Số nghiệm của phương trình bằng số giao điểm của đường thẳng y=m với đồ thị hàm số.
Do đó để phương trình có 3 nghiệm phân biệt thì đường thẳng y=m (song song hoặc trùng Ox và đi qua điểm (0;m)) phải cắt (C) tại 3 điểm phân biệt.
Quan sát đồ thì ta thấy 0 < m < 4 thỏa mãn.
Chương 2: Cacbohiđrat
CHƯƠNG I. DAO ĐỘNG CƠ
Unit 11. Books
Chương 6. KIM LOẠI KIỀM, KIM LOẠI KIỀM THỔ, NHÔM
SOẠN VĂN 12 TẬP 1