Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
LG a
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
Lời giải chi tiết:
+) TXĐ:
+) Chiều biến thiên:
BBT:
Hàm số đồng biến trên
Hàm số nghịch biến trên
Hàm số đạt cực đại tại
Hàm số đạt cực tiểu tại
+) Đồ thị:
Điểm uốn
Đồ thị hàm số cắt trục tung tại điểm
Điểm cực đại
Phương trình hoành độ giao điểm:
Đồ thị cắt trục hoành tại điểm
LG b
Chứng minh rằng điểm uốn của đường cong (C) là tâm đối xứng của nó
Lời giải chi tiết:
Công thức chuyển hệ tọa độ theo véc tơ
Phương trình đường cong trong hệ tọa độ IXY là:
Đây là hàm số lẻ nên đồ thị nhận
LG c
Với các giá trị nào của m, đường thẳng y = m cắt (C) tại 3 điểm phân biệt ?
Lời giải chi tiết:
Số nghiệm của phương trình bằng số giao điểm của đường thẳng y=m với đồ thị hàm số.
Do đó để phương trình có 3 nghiệm phân biệt thì đường thẳng y=m (song song hoặc trùng Ox và đi qua điểm (0;m)) phải cắt (C) tại 3 điểm phân biệt.
Quan sát đồ thì ta thấy 0 < m < 4 thỏa mãn.
CHƯƠNG II. SÓNG CƠ VÀ SÓNG ÂM
CHƯƠNG 2. CACBOHIDRAT
Unit 8. Life in the Future
Tải 10 đề kiểm tra 45 phút - Chương 1 – Hóa học 12
Đề kiểm tra giữa học kì II - Hóa học 12