ĐẠI SỐ VÀ GIẢI TÍCH - SBT TOÁN 11 NÂNG CAO

Bài 1.5 trang 7 SBT Đại số và Giải tích 11 Nâng cao

Đề bài

Chứng minh rằng số T thỏa mãn \(\sin \left( {x + T} \right) = \sin x\) với mọi \(x \in R\) phải có dạng \(T = k2\pi ,\) k là một số nguyên nào đó. Từ đó suy ra số T dương nhỏ nhất thỏa mãn \(\sin \left( {x + T} \right) = \sin x\) với mọi \(x \in R\) là \(2\pi \) (tức là hàm số \(y = \sin x\) là hàm số tuần hoàn với chu kì \(2\pi \)).

Lời giải chi tiết

Nếu \(\sin (x + T) = \sin x\) với mọi \(x\) , thì khi \(x = {\pi  \over 2}\) ta được \(\sin \left( {{\pi  \over 2} + T} \right) = 1\) . Số \(U\) mà \(\sin U = 1\) phải có dạng \(U = {\pi  \over 2} + k2\pi ,k\) là số nguyên nào đó , nên

\({\pi  \over 2} + T = {\pi  \over 2}+k2\pi \)

Vậy \(T = k2\pi \)

Ngược lại, dễ thấy rằng với mọi số nguyên \(k\) thì \(\sin (x + k2\pi ) = \sin x\) với mọi \(x\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved