Câu 16 trang 103 SGK Hình học 11 Nâng cao

Đề bài

Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc và AB = a, BC = b, CD = c.

a. Tính độ dài AD.

b. Chỉ ra điểm cách đều A, B, C, D

c. Tính góc giữa đường thẳng AD và mặt phẳng (BCD), góc giữa đường thẳng AD và mặt phẳng (ABC).

Phương pháp giải - Xem chi tiết

- Chứng minh \(\widehat {ABD} = \widehat {ACD} = {90^0}\).

a) Tính độ dài bằng cách sử dụng định lý Py-ta-go.

b) Xác định điểm cách đều bằng tính chất tam giác vuông.

c) Góc giữa đường thẳng và mặt phẳng (khác \({90^0}\)) là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.

Lời giải chi tiết

 

a. Ta có: CD ⊥ BC và CD ⊥ AB nên CD ⊥ (ABC)

mà AC ⊂ (ABC) do đó CD ⊥ AC.

Trong tam giác vuông ABC ta có:

\(A{C^2} = A{B^2} + B{C^2} = {a^2} + {b^2}\)

Trong tam giác vuông ACD ta có:

\(A{D^2} = A{C^2} + C{D^2} = {a^2} + {b^2} + {c^2}\)

Suy ra: \(AD = \sqrt {{a^2} + {b^2} + {c^2}} \)

b. Ta có: \(AB \bot BC\) và \(AB \bot CD\) suy ra AB ⊥ (BCD) do đó AB ⊥ BD.

Gọi I là trung điểm AD ta có:

+) Tam giác ACD vuông tại C có CI là đường trung tuyến ứng với cạnh huyền AD nên: \(IA = IC = ID = \frac{{AD}}{2}\left( 1 \right)\)

+) Tam giác ABD vuông tại B có BI là đường trung tuyến ứng với cạnh huyền AD nên: \[IA = IB = ID = \frac{{AD}}{2}\left( 2 \right)\]

Từ (1) và (2) suy ra: IA = IB = IC = ID

Vây I cách đều A, B, C, D.

c. Ta có: \(AB \bot \left( {BCD} \right)\) \( \Rightarrow BD\) là hình chiếu của \(AD\) trên \(\left( {BCD} \right)\).

Khi đó góc \(\widehat {\left( {AD,\left( {BCD} \right)} \right)} = \widehat {\left( {AD,BD} \right)} = \widehat {ADB}\).

Xét tam giác \(ABD\) vuông tại \(B\) thì \(\sin \widehat {ADB} = \dfrac{{AB}}{{AD}} = \dfrac{a}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\) \( \Rightarrow \widehat {\left( {AD,\left( {BCD} \right)} \right)} = \arcsin \dfrac{a}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)

Lại có \(DC \bot \left( {ABC} \right)\) \( \Rightarrow AC\) là hình chiếu của \(AD\) trên \(\left( {ABC} \right)\).

Khi đó góc \(\widehat {\left( {AD,\left( {ABC} \right)} \right)} = \widehat {\left( {AD,AC} \right)} = \widehat {DAC}\)

Xét tam giác \(ACD\) vuông tại \(C\) thì \(\sin \widehat {DAC} = \dfrac{{CD}}{{AD}} = \dfrac{c}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\) \( \Rightarrow \widehat {\left( {AD,\left( {ABC} \right)} \right)} = \arcsin \dfrac{c}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved