ĐẠI SỐ VÀ GIẢI TÍCH - SBT TOÁN 11 NÂNG CAO

Bài 1.6 trang 7 SBT Đại số và Giải tích 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Từ tính chất của hàm số y = sinx là hàm số tuần hoàn với chu kì , hãy chứng minh rằng:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Hàm số $y = A\sin \left( {\omega x + \alpha } \right) + B$ ($A,B,\omega ,\alpha $ là những hằng số, $A\omega  \ne 0$) là một hàm số tuần hoàn với chu kì ${{2\pi } \over {\left| \omega  \right|}}$

Lời giải chi tiết:

Giả sử $A\sin \left( {\omega \left( {x + T} \right) + \alpha } \right) = A\sin \left( {\omega x + \alpha } \right)$ với mọi $x \in R$.

Đặt $\omega x + \alpha  = u$ , ta được $\sin \left( {u + \omega T} \right) = \sin u$, với mọi số thực $u$ .

Vậy suy ra $\omega T = k2\pi $ , tức là $T = k{{2\pi } \over \omega },k$ nguyên.

Ngược lại dễ thấy rằng

$A\sin \left( {\omega \left( {x + k{{2\pi } \over \omega }} \right) + \alpha } \right) $$= A\sin \left( {\omega x + \alpha  + k2\pi } \right)$

$= A\sin (\omega x + \alpha )$

Vậy số $T = {{2\pi } \over {\left| \omega  \right|}}$ là số dương bé nhất thỏa mãn

$A\sin \left( {\omega \left( {x + T} \right) + \alpha } \right) = A\sin \left( {\omega x + \alpha } \right)$ với mọi $x \in R$.

(tức là $y = A\sin \left( {\omega x + \alpha } \right)$ là một hàm số tuần hoàn với chu kì ${{2\pi } \over {\left| \omega  \right|}}$ ).

LG b

Hàm số $y = A\cos \left( {\omega x + \alpha } \right) + B$ ($A,B,\omega ,\alpha $ là những hằng số, $A\omega  \ne 0$) là một hàm số tuần hoàn với chu kì ${{2\pi } \over {\left| \omega  \right|}}$

Lời giải chi tiết:

T là số mà $A\cos \left( {\omega \left( {x + T} \right) + \alpha } \right) = A\cos \left( {\omega x + \alpha } \right)$, với mọi $x \in R$ thì

$\sin \left( {\omega \left( {x + T} \right) + \alpha  + {\pi  \over 2}} \right) $ $= \sin \left( {\omega x + \alpha  + {\pi  \over 2}} \right)$

Đặt $\omega x + \alpha  + {\pi  \over 2} = u$, ta được $\sin (u + \omega T) = \sin u$ với mọi $u$ , từ đó $\omega T = k2\pi $ tức là $T = k{{2\pi } \over \omega },k$ là số nguyên.

(Cách khác, $A\cos \left( {\omega \left( {x + T} \right) + \alpha } \right) = A\cos \left( {\omega x + \alpha } \right)$ với mọi $x$, thì khi lấy $x =  - {\alpha  \over \omega }$ , ta có $\cos \omega T = \cos 0 = 1$ , từ đó $\omega T = k2\pi $, tức $T = k{{2\pi } \over \omega },k$ là số nguyên).

Từ đó dễ thấy rằng $y = A\cos (\omega x + \alpha )$ là một hàm số tuần hoàn với chu kì ${{2\pi } \over {\left| \omega  \right|}}$. 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved