Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Đề bài
Chứng minh rằng có hai tiếp tuyến chung của parabol \(y = {x^2} - 3x\) đi qua điểm \(A\left( {{3 \over 2}; - {5 \over 2}} \right)\) và chúng vuông góc với nhau.
Lời giải chi tiết
Phương trình của đường thẳng đi qua điểm A và có hệ số góc k là
\(y = k\left( {x - {3 \over 2}} \right) - {5 \over 2}\) \(\left( {{D_k}} \right)\)
Hoành độ giao điểm của parabol và đường thẳng \(\left( {{D_k}} \right)\) là nghiệm của phương trình
\(\eqalign{& {x^2} - 3x = kx - {3 \over 2}k - {5 \over 2} \cr & \Leftrightarrow 2{x^2} - 2(k + 3)x + 3k + 5 = 0 \cr} \)
Đường thẳng \(\left( {{D_k}} \right)\) là tiếp tuyến của parabol khi và chỉ khi phương trình trên có nghiệm kép, tức là
\(\eqalign{& \Delta ' = {\left( {k + 3} \right)^2} - 2\left( {3k + 5} \right) = 0 \cr & \Leftrightarrow {k^2} - 1 = 0 \Leftrightarrow k = \pm 1 \cr} \)
Như vậy có hai tiếp tuyến của parabol đi qua điểm A.
Hệ số góc của hai tiếp tuyến đó là \({k_1} = 1\) và \({k_2} = - 1\).
Vì \(k_1.{k_2} = - 1\) nên hai tiếp tuyến đó vuông góc với nhau.
Chương 2. Cacbohidrat
PHẦN 1. KĨ THUẬT ĐIỆN TỬ
Đề kiểm tra học kì 2
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Sinh học lớp 12
Bài 6. Công dân với các quyền tự do cơ bản