Câu 18 trang 224 Sách bài tập Hình học 11 Nâng cao

Đề bài

Trong mặt phẳng (P) cho đường tròn tâm O, bán kính R. Điểm A cố định thuộc đường tròn, đường kính BC quay quanh O, (BC không trùng với OA). Đặt \(\widehat {ABC} = \alpha \). Điểm S nằm trong không gian sao cho SA vuông góc với (P) và SA = 2R.

a) Chứng minh rằng chân đường cao SH của tam giác SBC thuộc một đường tròn cố định.

b) Xác định α để diện tích tam giác SBC đạt giá trị lớn nhất, hãy tính giá trị đó.

Lời giải chi tiết

a) Vì \(SA \bot \left( P \right)\) và \(SH \bot BC\) nên \(AH \bot BC\) (định lí ba đường vuông góc) hay \(\widehat {AHO} = {90^0}\). Như vậy H thuộc đường tròn đường kính AO trong mp(P). Đường tròn này cố định.

b) \({S_{SBC}} = {1 \over 2}BC.SH = R.SH\)

Do đó SSBC lớn nhất khi và chỉ khi SH lớn nhất. Điều này xảy ra khi và chỉ khi AH lớn nhất, tức là H và O trùng nhau, khi đó \(\alpha  = {45^0}\).

Khi \(\alpha  = {45^0}\) thì \({S_{SBC}} = R.\sqrt {4{{\rm{R}}^2} + {R^2}}  = {R^2}\sqrt 5 \).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved