ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Câu 2 trang 141 SGK Đại số và giải tích 11

Đề bài

Cho hai dãy số \((u_n)\) và \((v_n)\). Biết \(|u_n– 2| ≤ v_n\) với mọi \(n\) và \(\lim v_n=0\). Có kết luận gì về giới hạn của dãy số \((u_n)\)?

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa dãy số có giới hạn \(0\).

Dãy số \((u_n)\) có giới hạn 0 khi \(n\) dần tới dương vô cực nếu \(|{u_n}|\) có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi.

Lời giải chi tiết

Vì \(\lim v_n=0\) nên \(|{v_n}| \) nhỏ hơn một số dương \(\varepsilon\) bé tùy ý, kể từ một số hạng nào đó trở đi.

Nghĩa là \(|{v_n}| < \varepsilon \) kể từ một số hạng nào đó trở đi.

⇒ \(|{u_n}-2| \le {v_n} \le |{v_n}| < \varepsilon \) hay \(|{u_n}-2| < \varepsilon \) bé tùy ý kể từ một số hạng nào đó trở đi.

⇒ \(\lim ({u_n}-2) = 0\) (theo định nghĩa dãy số có giới hạn 0)

⇒ \(\lim {u_n} = 2\).

Cách khác:

Có thể sử dụng định lý giới hạn kẹp như sau:

Với mọi \(n ∈ \mathbb N^*\) , ta có: \(|u_n– 2| ≤ v_n⇔ -v_n ≤ u_n– 2 ≤ v_n\)

Mà \(\lim (-v_n) = \lim (v_n) = 0\) nên \(\lim (u_n– 2) = 0 \) \(⇔ \lim u_n – \lim 2 = 0\) \( ⇔ \lim u_n= 2\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved