Câu 20 trang 55 SGK Hình học 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho tứ diện ABCD và ba điểm P, Q, R lần lượt nằm trên ba cạnh AB, CD, BC. Hãy xác định giao điểm S của mp(PQR) với cạnh AD nếu:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

PR // AC

Phương pháp giải:

- Tìm giao tuyến của (PQR) với (ACD).

Sử dụng tính chất: Nếu hai mặt phẳng chứa hai đường thẳng song song thì chúng cắt nhau theo giao tuyến song song với đường thẳng đã cho.

- Tìm giao điểm S của AD với giao tuyến trên.

Lời giải chi tiết:

Trường hợp PR // AC

Ta có: \(\left\{ \begin{array}{l}
PR \subset \left( {PQR} \right)\\
AC \subset \left( {ACD} \right)\\
PR//AC\\
Q \in \left( {PQR} \right) \cap \left( {ACD} \right)
\end{array} \right. \) \(\Rightarrow \left( {PQR} \right) \cap \left( {ACD} \right) = Qt//AC\)

Trong (ACD), gọi S = Qt ∩ AD thì S = AD ∩ (PQR).

LG b

LG b

PR cắt AC

Lời giải chi tiết:

Trường hợp PR cắt AC

Trong (ABC), gọi I = PR ∩ AC

\( \Rightarrow \left\{ \begin{array}{l}
I \in AC \subset \left( {ACD} \right)\\
I \in PR \subset \left( {PQR} \right)
\end{array} \right.\)\( \Rightarrow I \in \left( {ACD} \right) \cap \left( {PQR} \right)\)

Mà \( Q\in \left( {ACD} \right) \cap \left( {PQR} \right)\)

⇒ (PQR) ∩ (ACD) = QI

Trong mp(ACD) ta có

S = QI ∩ AD thì S = AD ∩ (PQR).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved