LG a
Chứng minh rằng hai tứ giác lồi có cặp cạnh tương ứng bằng nhau và một cặp đường chéo tương ứng bằng nhau thì bằng nhau
Lời giải chi tiết:
Giả sử hai tứ giác lồi ABCD và A’B’C’D’ có \(AB = A’B’; BC = B’C’; \)\(CD = C’D’, DA = D’A’\) và \(AC = A’C’\)
Khi đó hai tam giác ABC và A’B’C’ bằng nhau nên có phép dời hình F biến ba điểm A, B, C lần lượt thành ba điểm A’, B’, C’
Gọi D” là điểm đối xứng với điểm D’ qua đường thẳng A’C’ thì hai tam giác A’C’D’ và A’C’D” bằng nhau và theo giả thiết, cùng bằng tam giác ACD
Bởi vậy phép F chỉ có thể biến điểm D thành điểm D’ hoặc D” (do phép dời hình bảo toàn độ dài đoạn thẳng)
Vì ABCD là tứ giác lồi nên hai đoạn thẳng AC và BD cắt nhau, A’B’C’D’ cũng là tứ giác lồi nên hai đoạn thẳng A’C’ và B’D’ cắt nhau, và do đó hai đoạn thẳng A’C’ và B’D” không cắt nhau.
Từ đó ta suy ra F biến D thành D’
Vậy F biến tứ giác ABCD thành tứ giác A’B’C’D’ và do đó hai tứ giác đó bằng nhau
LG b
Chứng minh rằng hai tứ giác lồi có các cặp cạnh tương ứng bằng nhau và một cặp góc tương ứng bằng nhau thì bằng nhau
Lời giải chi tiết:
Giả sử hai tứ giác ABCD và A’B’C’D’ có \(AB = A’B’, BC = B’C’, \)\(CD = C’D’, DA = D’A’\) và góc ABC bằng góc A’B’C’
Khi đó \(AC = A’C’\) và ta đưa về trường hợp ở câu a)
LG c
Hai tứ giác lồi có các cặp cạnh tương ứng bằng nhau thì có bằng nhau hay không?
Lời giải chi tiết:
Có thể không bằng nhau
Hai hình thoi có cạnh bằng nhau nhưng có thể là hai hình không bằng nhau (vì phép dời hình biến góc thành góc bằng nó)
Phần 2. Địa lí khu vực và quốc gia
Phần 1. Một số vấn đề về kinh tế - xã hội thế giới
Chương 6. Hợp chất carbonyl (Aldehyde - Ketone - Carboxylic acid
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
CHƯƠNG II: DÒNG ĐIỆN KHÔNG ĐỔl
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11