Câu 24 trang 111 SGK Hình học 11 Nâng cao

Đề bài

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA ⊥ (ABCD), SA = x. Xác định x để hai mặt phẳng (SBC) và (SDC) tạo với nhau góc 60˚.

Lời giải chi tiết

Gọi O là giao điểm của AC và BD. Trong mặt phẳng (SAC) kẻ OO1 vuông góc với SC.

Vậy góc giữa hai mp(SBC) và (SDC) bằng góc giữa hai đường thẳng BO1 và DO1.

Mặt khác OO1 ⊥ BD, OO1 < OC (vì OC là cạnh huyền của \(\Delta O{O_1}C\) vuông tại O1) mà OC = OB nên \(\widehat {B{O_1}O} > 45^\circ .\)

Tương tự \(\widehat {D{O_1}O} > 45^\circ \) tức \(\widehat {B{O_1}D} >90^\circ \)

Như vậy hai mặt phẳng (SBC) và (SDC) tạo với nhau góc \(60^\circ \) khi và chỉ khi: 

\(\widehat {B{O_1}D} =120^\circ \) \( \Leftrightarrow\) \(\widehat {B{O_1}O} = 60^\circ \) (vì ΔBO1D cân tại O1)

\( \Leftrightarrow BO = O{O_1}\tan 60^\circ  \) \(\Leftrightarrow BO = O{O_1}\sqrt 3 \)

Ta có \(O{O_1} \bot SC\) nên \(\widehat {O{O_1}C} = {90^0}\)

Xét tam giác \(CO{O_1}\) vuông tại \({O_1}\) có:

\(O{O_1} = OC\sin \widehat {OC{O_1}} = OC\sin \widehat {ACS}\) \( = OC.{{SA} \over {SC}}\)

Như vậy : \(BO = O{O_1}\sqrt 3  \Leftrightarrow BO = \sqrt 3 .OC.{{SA} \over {SC}} \) \(\Leftrightarrow SC = \sqrt 3 .SA\)

\( \Leftrightarrow \sqrt {{x^2} + 2{a^2}}  = \sqrt 3 .x \Leftrightarrow x = a\)

Vậy khi x = a thì hai mặt phẳng (SBC) và (SDC) tạo với nhau góc 60˚

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved