Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
LG a
Biết \({\log _7}12 = a\) , \({\log _{12}}24 = b\). Tính \({\log _{54}}168\) theo a và b.
Lời giải chi tiết:
\({\log _{54}}168 = {{{{\log }_7}168} \over {{{\log }_7}54}} = {{{{\log }_7}\left( {3.7.8} \right)} \over {{{\log }_7}\left( {{{2.3}^3}} \right)}} = {{{{\log }_7}3 + 1 + 3{{\log }_7}2} \over {{{\log }_7}2 + 3{{\log }_7}3}}\)
Như vậy, để tính được \({\log _{54}}168\) qua a, b ta cần tính được \({\log _7}3\),\({\log _7}2\) qua a, b .
Từ giả thiết \(a = {\log _7}12\) , \(b = {\log _{12}}24\), ta tính được \({\log _7}2\),\({\log _7}3\) từ hệ phương trình
\(\left\{ \matrix{ 2{\log _7}2 + {\log _7}3 = a \hfill \cr 3{\log _7}2 + {\log _7}3 = ab \hfill \cr} \right.\)
LG b
Biết \({\log _6}15 = a\),\({\log _{12}}18 = b\). Tính \({\log _{25}}24\) theo a và b.
Lời giải chi tiết:
\({\log _{25}}24 = {1 \over 2}{\log _5}24 = {3 \over 2}{\log _5}2 + {1 \over 2}{\log _5}3\)
Ta cần tính \({\log _5}2\) và \({\log _5}3\) theo \(a = {\log _6}15\) và \(b = {\log _{12}}18\)
Ta có \(a = {\log _6}15 = {{{{\log }_5}15} \over {{{\log }_5}6}} = {{1 + {{\log }_5}3} \over {{{\log }_5}2 + {{\log }_5}3}}\) (1)
Ta có \(b = {\log _{12}}18 = {{{{\log }_5}18} \over {{{\log }_5}12}} = {{{{\log }_5}2 + 2{{\log }_5}3} \over {2{{\log }_5}2 + {{\log }_5}3}}\) (2)
Từ (1) và (2), ta tính được \({\log _5}2\) và \({\log _5}3\) theo a và b
Bài 41. Vấn đề sử dụng hợp lí và cải tạo tự nhiên ở Đồng bằng sông Cửu Long
HÌNH HỌC SBT - TOÁN 12 NÂNG CAO
ĐỀ THI THỬ THPT QUỐC GIA MÔN LỊCH SỬ
Bài 22. Vấn đề phát triển nông nghiệp
Bài 26. Cơ cấu ngành công nghiệp