Đề bài
Cho hai tam giác ACD, BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Gọi I, J lần lượt là trung điểm của AB và CD.
a. Tính AB, IJ theo a và x.
b. Với giá trị nào của x thì hai mặt phẳng (ABC) và (ABD) vuông góc ?
Lời giải chi tiết
a. Vì J là trung điểm của CD và AC = AD nên AJ ⊥ CD.
Do mp(ACD) ⊥ mp(BCD) nên AJ ⊥ mp(BCD)
Mặt khác, AC = AD = BC = BD nên tam giác AJB vuông cân, suy ra
Vậy
Do IA = IB, tam giác AJB vuông tại J nên
b)
+Tam giác ABC có AC = BC
nên tam giác ABC cân tại C,
có CI là đường trung tuyến nên đồng thời là đường cao:
CI ⊥ AB (3)
Tam giác ABD cân tại D có DI là đường trung tuyến nên
DI ⊥ AB (4)
Hai mp (ABC) và (ABD) cắt nhau theo giao tuyến là AB (5)
Từ (3) , (4) và (5) suy ra góc giữa hai mp(ABC) và (ABD) là góc CID.
Vậy mp(ABC) ⊥ mp(ABD)
Chương 5. Cơ thể là một thể thống nhất và ngành nghề liên quan đến sinh học cơ thể
Chủ đề 3: Phối hợp kĩ thuật đánh cầu thấp tay
Hello!
SBT tiếng Anh 11 mới tập 1
Chuyên đề 2. Một số bệnh dịch ở người và cách phòng chống
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11