Câu 3 trang 125 SGK Hình học 11 Nâng cao

Đề bài

Cho tam giác ABC và hai hình vuông ABMN, ACPQ như hình 134.

a. Xác định phép quay biến tam giác ABQ thành tam giác ANC.

b. Chứng tỏ rằng hai đoạn thẳng BQ, CN bằng nhau và vuông góc với nhau.

c. Gọi O, O’ là tâm của các hình vuông, I là trung điểm của BC. Chứng minh rằng tam giác OIO’ là tam giác vuông cân. 

Lời giải chi tiết

a. Ta có: AB = AN, AQ = AC và góc (AB, AN) bằng  góc (AQ, AC) = -90˚

Vậy phép quay tâm A, góc quay φ = -90˚ biến tam giác ABQ thành tam giác ANC.

b. Vì đoạn thẳng BQ biến thành đoạn thẳng NC nên BQ = NC và BQ ⊥ NC.

c. Theo kí hiệu hình bên thì OI // NC, \(OI = {1 \over 2}NC;O'I//QB,O'I = {1 \over 2}BQ\)

vậy từ câu b ta suy ra tam giác IOO’ vuông cân tại đỉnh I.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved