Đề bài
Cho đường thẳng d đi qua hai điểm phân biệt P, Q và hai điểm A, B nằm về một phía đối với d. Hãy xác định trên d hai điểm M, N sao cho \(\overrightarrow {MN} = \overrightarrow {PQ} \) và AM + BN bé nhất
Lời giải chi tiết
Giả sử hai điểm M, N nằm trên d sao cho \(\overrightarrow {MN} = \overrightarrow {PQ} \)
Lấy điểm A’ sao cho \(\overrightarrow {AA'} = \overrightarrow {PQ} \) thì điểm A’ hoàn toàn xác định và AMNA’ là hình bình hành nên AM = A’N
Ta có: AM + BN = A’N + BN
Gọi A” là điểm đối xứng của A’ qua d, khi đó:
A’N + BN = A”N + BN ≥ A”B
Từ đó ta suy ra AM + BN nhỏ nhất khi N là giao điểm của BA” với d
Từ đó tìm được điểm M thỏa \(\overrightarrow {MN} = \overrightarrow {AA'} = \overrightarrow {PQ} \)
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương III - Hóa học 11
Chuyên đề 1: Tập nghiên cứu và viết báo cáo về một vấn đề văn học trung đại Việt Nam
Chủ đề 3. Điện trường
Đề kiểm tra giữa học kì 2
SBT Toán 11 - Cánh Diều tập 1
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11