Bài 3 trang 6 SBT Hình Học 11 nâng cao

Đề bài

Cho đường tròn (O) với đường kính AB cố định một đường kính MN thay đổi. Các đường thẳng AM và AN cắt tiếp tuyến tại B lần lượt tại P và Q. Tìm quỹ tích trực tâm các tam giác MPQ và NPQ.

Lời giải chi tiết

Tam giác MPQ có QA là một đường cao ( vì \(QA \bot MP\)).

Kẻ \(MM' \bot PQ\) thì MM’ cắt QA tại trực tâm H của tam giác MPQ

OA là đường trung bình của tam giác NMH nên:

\(\overrightarrow {MH}  = 2\overrightarrow {OA}  = \overrightarrow {BA} \)

Vậy phép tịnh tiến T theo vecto \(\overrightarrow {BA} \) biến M thành H.

Chú ý rằng M không trùng với A hoặc B, ta suy ra quỹ H là ảnh của đường tròn (O) (không kể hai điểm A và B) qua phép tịnh tiến đó.

Làm tương tự đối với trực tâm H’ của tam giác NPQ.

Quỹ tích điểm H' là ảnh của đường tròn (O) (không kể hai điểm A và B) qua phép tịnh tiến T theo vecto \(\overrightarrow {BA} \).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved