Đề bài
Cho hai đường thẳng chéo nhau a và b lần lượt nằm trên hai mặt phẳng song song (P) và (Q). Chứng minh rằng nếu điểm M không nằm trên (P) và không nằm trên (Q) thì có duy nhất một đường thẳng đi qua M cắt cả a và b
Lời giải chi tiết
Giả sử c = mp ( M, a) ∩ mp(M, b). Ta cần chứng minh c cắt cả a và b.
Vì c và a cũng nằm trên một mặt phẳng và không thể trùng nhau ( do c qua M và a không đi qua M) nên hoặc c // a hoặc c cắt a. Cũng vậy, hoặc c // b hoặc c cắt b.
Không thể xảy ra đồng thời c // a; c // b vì a và b chéo nhau. Vậy nếu c song song với a và c phải cắt b, tức là c qua một điểm của mp (Q) và song song với a, suy ra c phải thuộc mp (Q), và do đó M thuộc (Q) (trái giả thiết).
Tương tự, không thể có c song song với b.
Tóm lại c cắt a và b.
Nếu còn có đường thẳng c’ khác c đi qua M, cắt cả a và b thì a và b đồng phẳng. Vô lí.
Chương 3. Cacbon-Silic
Unit 2: Express Yourself
Chủ đề 1. Xây dựng và phát triển nhà trường
Chuyên đề 3: Một số vấn đề về pháp luật lao động
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Giáo dục kinh tế và pháp luật lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11