Đề bài
Chứng minh rằng dãy số \(({v_n}),\) với \({v_n} = {{{n^2} + 1} \over {2{n^2} - 3}},\) là một dãy số bị chặn.
Lời giải chi tiết
Viết lại công thức xác định \({v_n}\) dưới dạng
\({v_n} = {1 \over 2} + {5 \over {2.\left( {2{n^2} - 3} \right)}}\) (1)
Dễ thấy \(\forall n \ge 1,\) ta có \( - 1 \le {1 \over {2{n^2} - 3}} < {1 \over 5}.\) Do đó, từ (1) suy ra \( - 2 \le {v_n} \le 1\,\,\left( {\forall n \ge 1} \right).\) Vì vậy, \(({v_n})\) là một dãy số bị chặn.
Chủ đề 2. Công nghệ giống vật nuôi
Chủ đề 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
Chủ đề 3. Thực hiện các hoạt động xây dựng và phát triển nhà trường
Chương I. Giới thiệu chung về cơ khí chế tạo
Bài 7: Tiết 2: EU - Hợp tác, liên kết để cùng phát triển - Tập bản đồ Địa lí 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11