Đề bài
Chứng minh rằng dãy số \(({v_n}),\) với \({v_n} = {{{n^2} + 1} \over {2{n^2} - 3}},\) là một dãy số bị chặn.
Lời giải chi tiết
Viết lại công thức xác định \({v_n}\) dưới dạng
\({v_n} = {1 \over 2} + {5 \over {2.\left( {2{n^2} - 3} \right)}}\) (1)
Dễ thấy \(\forall n \ge 1,\) ta có \( - 1 \le {1 \over {2{n^2} - 3}} < {1 \over 5}.\) Do đó, từ (1) suy ra \( - 2 \le {v_n} \le 1\,\,\left( {\forall n \ge 1} \right).\) Vì vậy, \(({v_n})\) là một dãy số bị chặn.
Chuyên đề 1: Dinh dưỡng khoáng - Tăng năng suất cây trồng và nông nghiệp sạch
CHƯƠNG III - DÒNG ĐIỆN TRONG CÁC MÔI TRƯỜNG
Chuyên đề 1. Phép biến hình phẳng
SBT Toán 11 - Kết nối tri thức với cuộc sống tập 1
Chuyên đề 1. Dinh dưỡng khoáng - Tăng năng suất cây trồng và nông nghiệp sạch
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11