Đề bài
Cho hình hộp thoi ABCD.A’B’C’D’ có các cạnh đều bằng a và \(\widehat {BAD} = \widehat {BAA'} = \widehat {DAA'} = 60^\circ .\) Tính khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’).
Lời giải chi tiết
Từ giả thiết suy ra các tam giác A’AD, BAD, A’AB là các tam giác cân cùng có góc ở đỉnh bằng 60˚ nên chúng là các tam giác đều. Như vậy tứ diện A’ABD có các cạnh cùng bằng a hay A’ABD là tứ diện đều. Khi đó hình chiếu của A’ trên mp(ABCD) chính là trọng tâm H của tam giác đều ABD. Khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’) chính là độ dài A’H. Ta có:
\(A'{H^2} = AA{'^2} - A{H^2}\)
\(= {a^2} - {\left( {{{a\sqrt 3 } \over 3}} \right)^2} = {a^2} - {{{a^2}} \over 3} = {{2{a^2}} \over 3}\)
Vậy \(A'H = {{a\sqrt 6 } \over 3}\)
Chủ đề 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Toán lớp 11
Unit 6. World heritages
Đề minh họa số 2
Chuyên đề 2. Truyền thông tin bằng sóng vô tuyến
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11