Đề bài
Cấp số cộng \(({u_n})\) có \({u_{17}} - {u_{20}} = 9\) và \(u_{17}^2 + u_{20}^2 = 153\). Hãy tìm số hạng đầu và công sai của cấp số cộng đó.
Lời giải chi tiết
Kí hiệu d là công sai của cấp số cộng đã cho. Ta có
\(\eqalign{
& 9 = {u_{17}} - {u_{20}} = \left( {{u_1} + 16d} \right) - \left( {{u_1} + 19d} \right) = - 3d \cr&\Rightarrow d = - 3 \cr
& 153 = {\left( {{u_{17}}} \right)^2} + {\left( {{u_{20}}} \right)^2} \cr&\;\;\;\;\;\;\,= {1 \over 2}\left[ {{{\left( {{u_{17}} - {u_{20}}} \right)}^2} + {{\left( {{u_{17}} + {u_{20}}} \right)}^2}} \right] \cr&\;\;\;\;\;\;\,= {1 \over 2}\left[ {{9^2} + {{\left( {{u_{17}} + {u_{20}}} \right)}^2}} \right] \cr} \)
\( \Rightarrow {\left( {{u_{17}} + {u_{20}}} \right)^2} = 2 \times 153 - 81 = 225 = {15^2}\). Xảy ra các trường hợp :
\( - \) Trường hợp 1: \({u_{17}} + {u_{20}} = 15\). Khi đó
\(15 = \left( {{u_1} + 16d} \right) + \left( {{u_1} + 19d} \right) \)
\(= 2{u_1} + 35d = 2{u_1} + 35.( - 3) = 2{u_1} - 105 \)
\(\Rightarrow {u_1} = 60.\)
\( - \) Trường hợp 2: \({u_{17}} + {u_{20}} = - 15\). Khi đó
\( - 15 = \left( {{u_1} + 16d} \right) + \left( {{u_1} + 19d} \right) = 2{u_1} + 35d \)
\(= 2{u_1} + 35.( - 3)= 2{u_1} - 105 \)
\(\Rightarrow {u_1} = 45.\)
Vậy, cấp số cộng đã cho có \({u_1} = 60\) và \(d = - 3\) , hoặc \({u_1} = 45\) và \(d = - 3\).
Unit 9: Social issues
Unit 8: Becoming independent
Chương IV. Dòng điện không đổi
Phần ba: Sinh học cơ thể
Bài 10: Tiết 1: Tự nhiên, dân cư và tình hình phát triển kinh tế Trung Quốc - Tập bản đồ Địa lí 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11