Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho tam giác ABC vuông tại B. Lấy điểm D bất kì trên đường thẳng vuông góc với mặt phẳng (ABC) kẻ từ điểm A \((S ≢ A)\). Gọi B1, C1 lần lượt là hình chiếu của điểm A trên SB và SC. Chứng minh rằng khi điểm S thay đổi thì
a) Giao tuyến của mặt phẳng (ABC) và mặt phẳng (AB1C1) là đường thẳng cố định và là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC.
b) Đường thẳng B1C1 đi qua điểm cố định I và \(\widehat {IAB} = \widehat {IC{\rm{A}}}\).
Lời giải chi tiết
a) Dễ chứng minh được \(SC \bot \left( {A{B_1}{C_1}} \right)\). Gọi At là giao tuyến của (ABC) và (AB1C1) thì \(At \bot SC\). Mặt khác \(SA \bot \left( {ABC} \right)\) nên \(At \bot AC\). Vậy đường thẳng At là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC.
b) Kí hiệu I là giao điểm của At và đường thẳng BC thì I là điểm có định, mặt khác các điểm I, B1, C1 thuộc cả hai mặt phẳng (AB1C1) và (SBC), do đó các điểm I, B1, C1 thẳng hàng, tức là đường thẳng B1C1 đi qua điểm cố định I khi S thay đổi trên đường thẳng kẻ từ A vuông góc với mp(ABC).
Cũng từ chứng minh trên ta có \(\widehat {IAB} = \widehat {IC{\rm{A}}}\) (cùng chắn cung AB của đường tròn ngoại tiếp tam giác ABC).
CHƯƠNG 6: HIDROCACBON KHÔNG NO
Chuyên đề II. Làm quen với một vài yếu tố của lí thuyết đồ thị
Chương 2. Nitơ - Photpho
Unit 1: Generation gap and Independent life
Unit 3: Global warming & Ecological systems
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11