ĐẠI SỐ VÀ GIẢI TÍCH - SBT TOÁN 11 NÂNG CAO

Câu 3.52 trang 93 sách bài tập Đại số và Giải tích 11 Nâng cao

Đề bài

Cho một cấp số có 7 số hạng, số hạng thứ tư bằng 6 và số hạng thứ 7 gấp 243 lần số hạng thứ hai. Hãy tìm các số hạng còn lại của cấp số nhân đó.

Lời giải chi tiết

Với  mỗi \(n \in \left\{ {1,2,3,4,5,6,7} \right\},\) kí hiệu \({u_n}\) là số hạng thứ n của cấp số nhân đã cho. Kí hiệu q là công bội của cấp số nhân đó.

Theo giả thiết ta có \({u_4} = 6,{u_7} = 243{u_2}\) và theo yêu cầu của bài ra ta cần tính \({u_1},{u_2},{u_3},{u_4},{u_5},{u_6},{u_7}.\)

Hiển nhiên có \({u_2} \ne 0\); vì nếu ngược lại thì phải có \({u_4} = 0\), trái với giả thiết của bài ra. Vì thế, từ giả thiết \({u_7} = 243{u_2}\), theo công thức xác định số hạng tổng quát của một cấp số nhân, ta được

\(243 = \dfrac{{{u_7}}}{{{u_2}}} = \dfrac{{{u_1}.{q^6}}}{{{u_1}.q}} = {q^5}.\)

Suy ra \(q = 3.\) Vì thế, từ giả thiết \({u_4} = 6\) ta được \({u_1} = {{{u_4}} \over {{q^3}}} = {6 \over {{3^3}}} = {2 \over 9}.\)

Từ đó : \({u_2} = {u_1}.q = {2 \over 3},{u_3} = {u_2}.q = 2,{u_5} = {u_4}.q = 18,\)

\({u_6} = {u_5}.q = 54,{u_7} = {u_6}.q = 162.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved