Đề bài
Cho cấp số nhân \(({u_n})\) có \(6{u_2} + {u_5} = 1\) và \(3{u_3} + 2{u_4} = - 1.\) Hãy tìm số hạng đầu tổng quát của cấp số nhân đó.
Lời giải chi tiết
Gọi q là công bội của cấp số nhân đã cho, ta có
\(\left\{ \matrix{
6{u_2} + {u_5} = 1 \hfill \cr
3{u_3} + 2{u_4} = - 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{u_1}.(6q + {q^4}) = 1\,\,\,\,\,\,\,\,\,\;\;\;\,(1) \hfill \cr
{u_1}.(3{q^2} + 2{q^3}) = - 1\,\,\,\,\,(2) \hfill \cr} \right.\)
Dễ thấy, \({u_1}.q \ne 0\). Do đó cộng theo vế (1) và (2) ta được
\({q^3} + 2{q^2} + 3q + 6 = 0 \)
\(\Leftrightarrow \left( {q + 2} \right)\left( {{q^2} + 3} \right) = 0 \)
\(\Leftrightarrow q = - 2.\)
Từ đó suy ra
\({u_1} = {1 \over 4}\) và \(q = - 2.\)
Vậy số hạng tổng quát của cấp số nhân đã cho là :
\({u_n} = {1 \over 4} \times {( - 2)^{n - 1}}.\)
Phần 2. Chế tạo cơ khí
Chương IV. Dòng điện. Mạch điện
Chương 2. Nitơ - Photpho
Unit 6: Competitions - Những cuộc thi
Unit 7: Ecological Systems
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11