Đề bài
Cho cấp số nhân \(({u_n})\) có \(8{u_2} - 5\sqrt 5 .{u_5} = 0\) và \(u_1^3 + u_3^3 = 189\). Hãy tính tổng 12 số hạng đầu tiên của cấp số nhân đó.
Lời giải chi tiết
Kí hiệu q là công bội của cấp số nhân đã cho. Dễ thấy,\({u_1}.q \ne 0.\) Do đó, Ta có
\(\left\{ \matrix{
8.{u_2} - 5\sqrt 5 .{u_5} = 0 \hfill \cr
u_1^3 + u_3^3 = 189 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
{u_1}.q.(8 - 5\sqrt 5 .{q^3}) = 0 \hfill \cr
u_1^3.(1 + {q^6}) = 189 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{
q = {2 \over {\sqrt 5 }} \hfill \cr
{u_1} = 5 \hfill \cr} \right.\)
Từ đó, kí hiệu S là tổng cần tìm, ta được
\(S = 5 \times {{1 - {{\left( {{2 \over {\sqrt 5 }}} \right)}^{12}}} \over {1 - \left( {{2 \over {\sqrt 5 }}} \right)}} = {{57645 + 23058.\sqrt 5 } \over {3125}}.\)
Chủ đề 2. Quản lí bản thân
Chuyên đề 1. Dinh dưỡng khoáng - tăng năng suất cây trồng và nông nghiệp sạch
Phần 2. Địa lí khu vực và quốc gia
Chuyên đề 2. Lí thuyết đồ thị
Đề kiểm tra giữa học kì 2
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11