Cho dãy số \(({u_n})\) xác định bởi
\({u_1} = {1 \over 3}\) và \({u_{n + 1}} = {{n + 1} \over {3n}}{u_n}\) với mọi \(n \ge 1.\)
LG a
LG a
Chứng minh dãy số \(({v_n}),\) mà \({v_n} = {{{u_n}} \over n}\) với mọi \(n \ge 1,\) là một cấp số nhân. Hãy xác định số hạng đầu và công bội của cấp số nhân đó.
Lời giải chi tiết:
Từ hệ thức xác định dãy số \(({u_n})\) suy ra với mọi \(\forall n \ge 1\)
\({{{u_{n + 1}}} \over {n + 1}} = {1 \over 3} \times {{{u_n}} \over n},\,\,hay\,\,{v_{n + 1}} = {1 \over 3} \times {v_n}\)
Do đó, dãy số \(({v_n})\) là một cấp số nhân với số hạng đầu \({v_1} = {u_1} = {1 \over 3}\) và công bội bằng \({1 \over 3}\)
LG b
LG b
Hãy xác định số hạng tổng quát của dãy số \(({u_n})\).
Lời giải chi tiết:
Ta có \({v_n} = {1 \over 3} \times {1 \over {{3^{n - 1}}}} = {1 \over {{3^n}}}\) với mọi \(n \ge 1,\) Suy ra \({u_n} = {n \over {{3^n}}}\) với mọi \(n \ge 1.\)
LG c
LG c
Tính tổng \(S = {u_1} + {{{u_2}} \over 2} + {{{u_3}} \over 3} + .... + {{{u_{11}}} \over {11}}.\)
Lời giải chi tiết:
Ta có \(S = {u_1} + {{{u_2}} \over 2} + {{{u_3}} \over 3} + .... + {{{u_{11}}} \over {11}}.\)
\(\eqalign{
& = {v_1} + {v_2} + {v_3} + .... + {v_{11}} \cr
& = {1 \over 3} \times {{1 - {1 \over {{3^{11}}}}} \over {1 - {1 \over 3}}} = {{{3^{11}} - 1} \over {{{2.3}^{11}}}}={{88573} \over {177147}} \cr} \)
CHƯƠNG 9: ANĐEHIT - XETON - AXIT CACBOXYLIC
Unit 1: Eat, drink and be healthy
Chủ đề 3. Công nghệ thức ăn chăn nuôi
Chuyên đề 1. Trường hấp dẫn
Unit 4: Preserving World Heritage
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11