Câu 38 trang 68 SGK Hình học 11 Nâng cao

Đề bài

Chứng minh rẳng tổng bình phương tất cả các đường chéo của một hình hộp bằng tổng bình phương tất cả các cạnh của hình hộp đó

Phương pháp giải - Xem chi tiết

Áp dụng tính chất: “ Trong một hình bình hành, tổng bình phương hai đường chéo bằng tổng bình phương bốn cạnh.”

Chứng minh:

Ta có:

\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2AB.BC\cos B\\B{D^2} = A{B^2} + A{D^2} - 2AB.AD\cos A\\\,\,\,\,\,\,\,\,\,\,\, = A{B^2} + B{C^2} + 2AB.BC\cos B\end{array}\)

Vì \(AD = BC\) và \(\cos A =  - \cos B\) (hai góc bù nhau thì cos đối nhau)

\( \Rightarrow A{C^2} + B{D^2} = 2A{B^2} + 2B{C^2}\) \( = 2\left( {A{B^2} + B{C^2}} \right)\).

Lời giải chi tiết

 

Đặt AB = a, BC = b, AA’ = c ( đó là 3 kích thước của hình hộp).

Trong hình bình hành ABC’D’ ta có:

\(AC'{^2} + BD{'^2} = 2\left( {{a^2} + BC'{^2}} \right)\)  (1)

Trong hình bình hành A’B’CD ta có:

\(A'{C^2} + B'{D^2} = 2\left( {{a^2} + B'{C^2}} \right)\)  (2)

Cộng (1) và (2) ta được :

\(AC'{^2} + BD'{^2}+A'{C^2} + B'{D^2} \)\(= 2\left( {2{a^2} + BC{'^2} + B'{C^2}} \right)\) (3)

Mặt khác trong hình bình hành BB’C’C ta có:

\(BC{'^2} + B'{C^2} = 2\left( {{b^2} + {c^2}} \right)\)  (4)

Thay (4) vào (3) ta được :

\(AC'{^2} + BD'{^2} + A'{C^2} + B\,'{D^2}\)\( = 4\left( {{a^2} + {b^2} + {c^2}} \right)\)  (đpcm).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved