Đề bài
Chứng minh rẳng tổng bình phương tất cả các đường chéo của một hình hộp bằng tổng bình phương tất cả các cạnh của hình hộp đó
Phương pháp giải - Xem chi tiết
Áp dụng tính chất: “ Trong một hình bình hành, tổng bình phương hai đường chéo bằng tổng bình phương bốn cạnh.”
Chứng minh:
Ta có:
\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2AB.BC\cos B\\B{D^2} = A{B^2} + A{D^2} - 2AB.AD\cos A\\\,\,\,\,\,\,\,\,\,\,\, = A{B^2} + B{C^2} + 2AB.BC\cos B\end{array}\)
Vì \(AD = BC\) và \(\cos A = - \cos B\) (hai góc bù nhau thì cos đối nhau)
\( \Rightarrow A{C^2} + B{D^2} = 2A{B^2} + 2B{C^2}\) \( = 2\left( {A{B^2} + B{C^2}} \right)\).
Lời giải chi tiết
Đặt AB = a, BC = b, AA’ = c ( đó là 3 kích thước của hình hộp).
Trong hình bình hành ABC’D’ ta có:
\(AC'{^2} + BD{'^2} = 2\left( {{a^2} + BC'{^2}} \right)\) (1)
Trong hình bình hành A’B’CD ta có:
\(A'{C^2} + B'{D^2} = 2\left( {{a^2} + B'{C^2}} \right)\) (2)
Cộng (1) và (2) ta được :
\(AC'{^2} + BD'{^2}+A'{C^2} + B'{D^2} \)\(= 2\left( {2{a^2} + BC{'^2} + B'{C^2}} \right)\) (3)
Mặt khác trong hình bình hành BB’C’C ta có:
\(BC{'^2} + B'{C^2} = 2\left( {{b^2} + {c^2}} \right)\) (4)
Thay (4) vào (3) ta được :
\(AC'{^2} + BD'{^2} + A'{C^2} + B\,'{D^2}\)\( = 4\left( {{a^2} + {b^2} + {c^2}} \right)\) (đpcm).
CHƯƠNG IV- TỪ TRƯỜNG
Unit 5: Global warming
SGK Toán 11 - Cánh Diều tập 2
Chương I. Dao động
Chương 4: Hydrocarbon
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11