Đề bài
Cho hai cấp số nhân có cùng số các số hạng. Tính các số hạng tương ứng của chúng có lập thành cấp số nhân không? Vì sao? Cho một ví dụ minh họa.
Phương pháp giải - Xem chi tiết
Định nghĩa CSN: \((u_n)\) là CSN công bội q thì \({u_{n + 1}} = q{u_n}\)
Lời giải chi tiết
Gọi \((a_n)\) là cấp số nhân công bội \(q_1\) và \((b_n)\) là cấp số nhân công bội \(q_2\) tương ứng.
Xét \(\left( {{u_n}} \right)\) với \({u_n} = {a_n}.{b_n}\)
Ta có:
\({u_{n + 1}} = {a_{n + 1}}.{b_{n + 1}} \)
\(\Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{a_{n + 1}}{b_{n + 1}}}}{{{a_n}{b_n}}} = \frac{{{a_{n + 1}}}}{{{a_n}}}.\frac{{{b_{n + 1}}}}{{{b_n}}} = {q_1}{q_2}\)
Vậy dãy số \((u_n)\) là một cấp số nhân có công bội : \(q = q_1q_2\)
Ví dụ:
\(1, 2, 4 ,...\) là cấp số nhân có công bội \(q_1= 2\)
\(3, 9, 27, ...\) là cấp số nhân có công bội \(q_2= 3\)
Suy ra: \(3, 18, 108...\) là cấp số nhân có công bội: \(q = q_1q_2= 2.3 = 6\).
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Sinh học lớp 11
CHƯƠNG V. CẢM ỨNG ĐIỆN TỪ
Chương 3. Sinh trưởng và phát triển ở sinh vật
Chủ đề 4. Trách nhiệm với gia đình
SBT Toán 11 - Chân trời sáng tạo tập 1
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11