Câu 4 trang 120 SGK Hình học 11 Nâng cao

Đề bài

Tam giác ABC vuông có cạnh huyền BC nằm trong mp(P), cạnh AB và AC lần lượt tạo với mp(P) các góc β và γ. Gọi α là góc tạo bởi mp(P) và mp(ABC). Chứng minh rằng \({\sin ^2}\alpha  = {\sin ^2}\beta  + {\sin ^2}\gamma \)

Phương pháp giải - Xem chi tiết

Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.

Lời giải chi tiết

Kẻ AH ⊥ mp(P) và AI ⊥ BC.

Khi đó HB là hình chiếu của AB trên (P) nên góc giữa AB và (P) bằng góc giữa AB và HB hay \(\beta  = \widehat {ABH}\)

HC là hình chiếu của AC trên (P) nên góc giữa AC và (P) bằng góc giữa AC và HC hay \(\gamma  = \widehat {ACH}\)

Lại có:

\(\left\{ \begin{array}{l}
AI \bot BC\\
AH \bot BC\left( {AH \bot \left( P \right)} \right)
\end{array} \right. \) \(\Rightarrow BC \bot \left( {AIH} \right) \Rightarrow BC \bot HI\)

Mà \(BC \bot AI\) và \(\left( {ABC} \right) \cap \left( P \right) = BC\) nên góc giữa (ABC) và (P) bằng góc giữa AI và HI hay \(\alpha  = \widehat {AIH}.\) (do \(\widehat {AIH}<90^0\)).

Vì ΔABC vuông ở A nên :

\(\eqalign{  & {1 \over {A{I^2}}} = {1 \over {A{B^2}}} + {1 \over {A{C^2}}}  \cr  &  \Rightarrow {{A{H^2}} \over {A{I^2}}} = {{A{H^2}} \over {A{B^2}}} + {{A{H^2}} \over {A{C^2}}}  \cr  & hay\,\,{\sin ^2}\alpha  = {\sin ^2}\beta  + {\sin ^2}\gamma  \cr} \)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved