Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho tam giác đều ABC có cạnh bằng a. Gọi ∆ là đường thẳng vuông góc với mặt phẳng (ABC) kẻ từ A. Với điểm M bất kì thuộc ∆, \(M ≢ A\), gọi K là trực tâm của tam giác MBC và ∆1 là đường thẳng đi qua K và vuông góc với mặt phẳng (MBC). Chứng minh rằng:
a) ∆1 đi qua điểm cố định khi M thay đổi trên ∆.
b) ∆1 cắt ∆ tại điểm N và BM vuông góc với CN, CM vuông góc với BN. Xác định vị trí điểm M để độ dài MN đạt giá trị bé nhất.
Lời giải chi tiết
a) Gọi I là trung điểm của BC thì \(AI \bot BC,MI \bot BC\). Vậy K thuộc MI. Ta cũng có \(BC \bot \left( {MAI} \right)\). Do ∆1 đi qua K và \({\Delta _1} \bot \left( {MBC} \right)\) nên \({\Delta _1} \bot BC\). Vậy ∆1 nằm trong mp(MAI). Gọi giao điểm của ∆1 với AI là H thì \(HK \bot MC\), mặt khác \(BK \bot MC\), từ đó MC vuông góc với (BHK) hay \(MC \bot BH\).
Từ \(\Delta \bot \left( {ABC} \right),\,BH \bot MC\) nên \(BH \bot AC\).
Vậy H là trực tâm của tam giác ABC. Điều này chứng tỏ khi M thay đổi trên \(\Delta\) thì \(\Delta_1\) đi qua điểm cố định là trực tâm H của tam giác ABC.
b) Vì ∆1 là đường thăngt HK nên ∆1 cắt ∆ tại điểm N.
Theo câu a), ta có MC vuông góc với (BHK) mà BN thuộc mặt phẳng này, vậy NB vuông góc với MC.
Tương tự như trên, ta cũng có \(MB \bot NC\)
Từ ∆AHN đồng dạng ∆AMI, ta có \({{AH} \over {AM}} = {{AN} \over {AI}} \Rightarrow AH.AI = AM.AN\)
Mặt khác \(AH.AI = {{a\sqrt 3 } \over 3}.{{a\sqrt 3 } \over 2} = {{{a^2}} \over 2}\) .
do đó \(AM.AN = {{{a^2}} \over 2}\)
Ta có: MN = AM + AN
Vậy MN ngắn nhất khi và chỉ khi \(AM = AN = {{a\sqrt 2 } \over 2}\).
Hệ thức này xác định điểm M để MN có độ dài ngắn nhất.
ĐỀ CƯƠNG HỌC KÌ 1 - SINH 11
Chuyên đề 1: Phát triển kinh tế và sự biến đổi môi trường tự nhiên
Chuyên đề 2: Tìm hiểu ngôn ngữ trong đời sống xã hội hiện đại
Test Yourself 4
Phần 2. Địa lí khu vực và quốc gia
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11