Đề bài
Tìm giới hạn của dãy số \(\left( {{u_n}} \right)\) với
\({u_n} = {1 \over {\sqrt {{n^3} + 1} }} + {1 \over {\sqrt {{n^3} + 2} }} + ... + {1 \over {\sqrt {{n^3} + n} }}\)
Lời giải chi tiết
Vì \({1 \over {\sqrt {{n^3} + k} }} \le {1 \over {\sqrt {{n^3} + 1} }}\) với mọi \(k = 1,2,3,...,n,\) nên \(0 < {u_n} \le {n \over {\sqrt {{n^3} + 1} }} < {1 \over {\sqrt n }}\) với mọi n
Vì \(\lim {1 \over {\sqrt n }} = 0,\) nên từ đó suy ra \(\lim {u_n} = 0\)
Chủ đề 1: Vai trò, tác dụng của môn bóng rổ đối với sự phát triển thể chất - các tình huống được phát bóng biên và ném phạt trong thi đấu môn bóng rổ
Chủ đề 1. Dao động
Unit 4: Preserving World Heritage
Chương 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Chủ đề 1: Cân bằng hóa học
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11