Đề bài
Chứng minh rằng nếu \(\left| q \right| < 1\) thì \(\lim {q^n} = 0\)
H.D. Xét trường hợp \(0 < q < 1.\) Khi đó \(p = {1 \over q} > 1.\) Do đó
\(p = 1 + h\) với \(h = p - 1 > 0\) và \({1 \over {{q^n}}} = {p^n} = {\left( {1 + h} \right)^n} \ge 1 + nh\) với mọi n
Lời giải chi tiết
Chỉ cần chứng minh cho trường hợp \(0 < q < 1.\) Khi đó, đặt \(p = {1 \over q},\) ta được \(p > 1.\) Do đó
\(p = 1 + h\) với \(h = p - 1 > 0\)
Ta có
\({1 \over {{q^n}}} = {p^n} = {\left( {1 + h} \right)^n} \ge 1 + nh > nh\) với mọi n
Do đó
\(0 < {q^n} < {1 \over h}.{1 \over n}\) với mọi n
Vì \(\lim {1 \over n} = 0\) nên từ đó suy ra
\(\lim {q^n} = 0\)
Chương IV. Dòng điện. Mạch điện
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
CHƯƠNG III. DÒNG ĐIỆN TRONG CÁC MÔI TRƯỜNG
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Unit 10: Travel
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11