Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình chóp S.ABCD có đáy là một tứ giác lồi. M là trung điểm của cạnh bên SA, N là trung điểm của cạnh bên SC.
a) Xác định các thiết diện của hình chóp khi cắt bởi các mặt phẳng lần lượt qua M, N và song song với mp(SBD).
b) Gọi I, J là giao điểm của hai mặt phẳng nói trên với AC. Chứng minh rằng \(IJ = {1 \over 2}AC\).
Lời giải chi tiết
a)
Giả sử (P) là mặt phẳng qua M và song song với mp(SBD) và E, F là giao điểm của (P) với các cạnh AB và AD. Khi đó, dễ thấy ME // SB, MF // SD và EF // BD. Vậy thiết diện của hình chóp khi cắt bởi mặt phẳng qua M và song song với mp(SBD) là tam giác MEF.
Tương tự, thiết diện của hình chóp khi cắt bởi mặt phẳng qua N và song song với mp(SBD) là tam giác NKH với NK // SB, NH // SD, KH // BD.
b) I, J lần lượt là giao điểm của hai mặt phẳng (MEF), (NKH) với AC cũng chính là giao điểm của EF, KH với AC. Do M là trung điểm của SA và ME // SB, MF // SD nên E, F lần lượt là trung điểm của AB và AD. Từ đó suy ra I là trung điểm của AO, (ở đây O là giao điểm của AC và BD).
Vậy \(IO = {1 \over 2}AO\)
Tương tự \({\rm{OJ}} = {1 \over 2}OC\). Vậy \({\rm{IJ}} = {1 \over 2}AC\)
Tải 10 đề kiểm tra 15 phút - Chương II - Hóa học 11
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
Unit 8: Cties
Unit 5: Global warming
Bài 6. Tiết 1: Tự nhiên và dân cư Hoa Kì - Tập bản đồ Địa lí 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11