Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Đề bài
Cho tam giác đều OAB trong mặt phằng phức (O là gốc tọa độ). Chứng minh rằng nếu A, B theo thứ tự biểu diễn các số \({z_1},{z_0}\) thì \({z_0}^2 + {z_1}^2 = {z_0}{z_1}\)
Lời giải chi tiết
Tam giác OAB là tam giác đều khi và chỉ khi OA = OB và góc ( OA, OB ) bằng \({\pi \over 3}\) hoặc \( - {\pi \over 3}\) tức là khi và chỉ khi \({z_0} \ne 0\) và nếu đặt \({{{z_1}} \over {{z_0}}} = \alpha \) thì \(\left| \alpha \right| = 1\) và một acgumen của \(\alpha \) là \({\pi \over 3}\) hoặc \( - {\pi \over 3}\).
Mặt khác, khi \({{{z_1}} \over {{z_0}}} = \alpha \) thì \(z_0^2 + z_1^2 = {z_0}{z_1} \Leftrightarrow z_0^2 + {\alpha ^2}z_0^2 = \alpha z_0^2 \Leftrightarrow 1 + {\alpha ^2} = \alpha \)
\( \Leftrightarrow {\alpha ^2} - \alpha + 1 = 0 \Leftrightarrow \alpha = {{1 \pm \sqrt 3 i} \over 2} \Leftrightarrow \left\lfloor \alpha \right\rfloor = 1\) và một acgumen của \(\alpha \) là \({\pi \over 3}\) hoặc \( - {\pi \over 3}\).
Vậy ta đã chứng minh : OAB là tam giác đều khi và chỉ khi \(z_0^2 + z_1^2 = {z_0}{z_1}\) ( \(z \ne 0\)).
Nghị luận văn học lớp 12
SOẠN VĂN 12 TẬP 2
Tải 30 đề thi học kì 2 - Hóa học 12
HÌNH HỌC - TOÁN 12
Đề kiểm tra học kì 1