Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi
\(\left\{ \matrix{
{u_1} = 3 \hfill \cr
2{u_{n + 1}} = {u_n} + 1 \hfill \cr} \right.\)
Gọi \(\left( {{v_n}} \right)\) là dãy số xác định bởi
\({v_n} = {u_n} - 1\) với mọi n
LG a
LG a
Chứng minh rằng \(\left( {{v_n}} \right)\) là một cấp số nhân lùi vô hạn.
Lời giải chi tiết:
Với mọi n, ta có
\({v_{n + 1}} = {u_{n + 1}} - 1 = {{{u_n} + 1} \over 2} - 1 = {{{u_n} - 1} \over 2} = {1 \over 2}{v_n}.\)
Vậy dãy số \(\left( {{v_n}} \right)\) là một cấp số nhân với công bội \(q = {1 \over 2}.\)
LG b
LG b
Gọi \({S_n}\) là tổng số hạng đầu tiên của dãy số \(\left( {{u_n}} \right)\). Tìm \(\lim {S_n}\)
Lời giải chi tiết:
Ta có
\(\eqalign{
{S_n}& = {u_1} + {u_2} + ... + {u_n} \cr&= \left( {{v_1} + 1} \right) + \left( {{v_2} + 1} \right) + ... + \left( {{v_n} + 1} \right) \cr
& = \left( {{v_1} + {v_2} + ... + {v_n}} \right) + n = {s_n} + n, \cr} \)
Trong đó \({s_n}\) là tổng của n số hạng đầu tiên của cấp số nhân lùi vô hạn \(\left( {{v_n}} \right)\). Tổng của cấp số nhân \(\left( {{v_n}} \right)\) là
\(s = \lim {s_n} = {{{v_1}} \over {1 - q}} = {2 \over {1 - {1 \over 2}}} = 4.\)
Do đó
\(\lim {S_n} = \lim \left( {{s_n} + n} \right) = + \infty \).
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Sinh học lớp 11
Unit 10: The ecosystem
Chủ đề 2. Sóng
Bài 9: Tiết 3: Thực hành: Tìm hiểu về hoạt động kinh tế đối ngoại của Nhật Bản - Tập bản đồ Địa lí 11
CHƯƠNG II - DÒNG ĐIỆN KHÔNG ĐỔI
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11