Đề bài
Chứng minh rằng nếu \(\mathop {\lim }\limits_{x \to {x_0}} \left| {f\left( x \right)} \right| = 0\) thì \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = 0\).
Lời giải chi tiết
Giả sử hàm số \(f\) xác định trên một khoảng \(I\) chứa điểm \({x_0}\) và \(({x_n})\) là một dãy số trong tập hợp \(I\backslash \left\{ {{x_0}} \right\}\) sao cho \(\lim {x_n} = {x_0}.\) Khi đó vì \(\mathop {\lim }\limits_{x \to {x_0}} \left| {f\left( x \right)} \right| = 0\) nên \(\lim \left| {f\left( {{x_n}} \right)} \right| = 0.\)Từ đó suy ra \(\lim f\left( {{x_n}} \right) = 0.\) Vậy \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = 0\).
Chủ đề 2. Sóng
Tiếng Anh 11 mới tập 1
Unit 3: Global warming
Chương 6: Hợp chất carbonyl (Aldehyde - Ketone) - Carboxylic acid
Chương IV. Sản xuất cơ khí
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11