Đề bài
Cho tứ diện ABCD có cạnh AD vuông góc với mp(DBC). Gọi AE, BF là hai đường cao của tam giác ABC; H và K lần lượt là trực tâm của tam giác ABC và tam giác DBC. Chứng minh rằng:
a) \(mp\left( {A{\rm{D}}E} \right) \bot mp\left( {ABC} \right)\) và \(mp\left( {BFK} \right) \bot mp\left( {ABC} \right)\).
b) \(HK \bot mp\left( {ABC} \right)\)
Lời giải chi tiết
a) Vì \(A{\rm{D}} \bot \left( {DBC} \right)\) nên \(A{\rm{D}} \bot BC\).
Mặt khác \(A{\rm{E}} \bot BC\). Vậy \(BC \bot \left( {A{\rm{D}}E} \right)\), từ đó ta có \(\left( {ABC} \right) \bot \left( {A{\rm{D}}E} \right)\).
Vì K là trực tâm tam giác DBC nên \(BK \bot AC\). Theo giả thiết \(A{\rm{D}} \bot \left( {DBC} \right)\), vậy \(BK \bot AC\) (định lí ba đường vuông góc). Kết hợp với \(BF \bot AC\) ta có \(AC \bot \left( {BFK} \right)\), từ đó \(mp\left( {ABC} \right) \bot mp\left( {BFK} \right)\).
b) Từ câu a), ta có
\(\eqalign{ & mp\left( {BFK} \right) \bot mp\left( {ABC} \right) \cr & mp\left( {A{\rm{D}}E} \right) \bot mp\left( {ABC} \right) \cr & HK = mp\left( {A{\rm{D}}E} \right) \cap mp\left( {BFK} \right) \cr} \)
Vậy \(HK \bot mp\left( {ABC} \right)\).
PHẦN 2. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI (Phần từ năm 1917 đến năm 1945)
Chủ đề 3. Thực hiện các hoạt động xây dựng và phát triển nhà trường
Phần hai. Địa lí khu vực và quốc gia
Chủ đề 4: Kĩ thuật treo cầu thuận tay và phối hợp kĩ thuật, chiến thuật cơ bản
Unit 1: Food for Life
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11