Đề bài
Cho tam giác cân ABC, \(AB = AC = a,\widehat {BAC} = {120^0}\). Xét hai tia cùng chiều Bt, Ct’ và vuông góc với mp(ABC). Lấy điểm B’ thuộc Bt, C’ thuộc Ct’ sao cho BB’ = 3CC’ và \(C’ ≢ C\).
a) Chứng minh rằng giao tuyến của mp(ABC) và mp(AB’C’) cố định khi B’. C’ thay đổi.
b) Khi BB’ = a, tính góc giữa hai mặt phẳng (AB’C’) và (ABC), tính diện tích tam giác AB’C’.
Lời giải chi tiết
a) Vì BB’ = 3CC’ nên đường thẳng B’C’ cắt BC tại điểm I thì \(BI = {3 \over 2}BC\).
Như vậy I là điểm cố định, mặt khác giao tuyến của mp(AB’C’) và mp(ABC) là AI. Như vậy, khi B’, C’ thay đổi thì giao tuyến của mp(AB’C’) và mp(ABC) là đường thẳng AI cố định.
b) Khi BB’ = a thì \(CC' = {a \over 3}\)
Dễ thấy: \(BC = a\sqrt 3 \)
Do \(CC' = {1 \over 2}BC\)
nên \(CI = {{a\sqrt 3 } \over 2}\)
Ta có: \(AJ = {a \over 2}\left( {AJ \bot BC,J \in BC} \right)\) và \(IJ = a\sqrt 3 \).
Kẻ \(CK \bot AI\), do \(C'C \bot \left( {ABC} \right)\) nên \(C'K \bot AI\).
Vậy \(\widehat {CKC'}\) là góc giữa mp(AB’C’) và mp(ABC).
Ta có:
\(\eqalign{ & {{CK} \over {AJ}} = {{CI} \over {AI}}; \cr & A{I^2} = A{J^2} + J{I^2} = {{{a^2}} \over 4} + 3{a^2} = {{13{a^2}} \over 4} \cr} \)
nên \(AI = {{a\sqrt {13} } \over 2}\)
Từ đó \(CK = {a \over 2}.{{a\sqrt 3 } \over 2}.{2 \over {a\sqrt {13} }} = {{a\sqrt 3 } \over {2\sqrt {13} }}\)
Đặt \(\widehat {CKC'} = \varphi \) thì \(\tan \varphi = {{CC'} \over {CK}} = {a \over 3}.{{2\sqrt {13} } \over {a\sqrt 3 }} \Leftrightarrow \tan \varphi = {{2\sqrt {39} } \over 9}\)
Như thế góc giữa mp(AB’C’) và mp(ABC) là φ mà \(\tan \varphi = {{2\sqrt {39} } \over 9}\) .
Tam giác AB’C’ có hình chiếu trên mp(ABC) là tam giác ABC mà \({S_{ABC}} = {{{a^2}\sqrt 3 } \over 4}\).
Vậy \({S_{AB'C'}} = {{{S_{ABC}}} \over {\cos \varphi }} = {{{a^2}\sqrt {79} } \over {12}}\)
(Tính cosφ nhờ \(\tan \varphi = {{2\sqrt {39} } \over 9}\) được \(\cos\varphi = {{3\sqrt 3 } \over {\sqrt {79} }}\))
Unit 4: Volunteer Work - Công việc tình nguyện
Test Yourself 2
Chương 2: Nitrogen và sulfur
Chủ đề 5: Phối hợp kĩ thuật đánh cầu cao thuận tay
Unit 9: Education in the future
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11