Câu 49 trang 123 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho hai mặt phằng (P) và (Q) vuông góc với nhau theo giao tuyến ∆. Lấy hai điểm A, B cố định thuộc ∆ sao cho AB = a. Gọi SAB là tam giác đều trong (P), ABCD là hình vuông nằm trong (Q).

a) Tính góc giữa mặt phẳng (SCD) với các mặt phẳng (P) và (Q).

b) Gọi O1 là giao điểm của hai đường thẳng B­1C và A1D, ở đó A1, B1 tương ứng là các trung điểm của SA, SB. Gọi H1 là giao điểm của đường cao SH của tam giác SAB với mp(A1B1CD). Chứng minh rằng SO1 vuông góc với SA và CD. Tính góc giữa mp(A1B1O1) với các mặt phẳng (P) và (Q).

Lời giải chi tiết

 

a) Dễ thấy mp(SCD) cắt (P) theo giao tuyến Sx, Sx // AB.

Gọi H và K lần lượt là trung điểm của AB và CD thì \(S{\rm{x}} \bot mp\left( {SHK} \right)\) và tam giác SHK vuông tại H, Suy ra \(\widehat {H{\rm{S}}K}\) là góc giữa hai mặt phẳng (SDC) và (P). Ta có:

\(\tan \widehat {H{\rm{S}}K} = {{HK} \over {H{\rm{S}}}} = {a \over {{{a\sqrt 3 } \over 2}}} = {{2\sqrt 3 } \over 3}\)

Vậy  nếu gọi φ là góc giữa hai mặt phẳng (SDC) và (P) thì φ là góc thỏa mãn:

\(\tan \varphi  = {{2\sqrt 3 } \over 3}\)

Tương tự như trên thì \(\widehat {HK{\rm{S}}}\) là góc giữa hai mặt phẳng (SCD) và (Q).

Ta có: \(\tan \widehat {HK{\rm{S}}} = {{a\sqrt 3 } \over {2{\rm{a}}}} = {{\sqrt 3 } \over 2}\) .

b)

 

Dễ thấy ba điểm O1, H1, K thẳng hàng (do H1 là giao điểm của SH với A1B1) và \({H_1}{O_1} = {H_1}K\). Mặt khác \({H_1}S = {H_1}H\). Suy ra O1S // HK.

Do \(HK \bot AB\) và \(\left( {SAB} \right) \bot \left( {ABC{\rm{D}}} \right)\) nên \(HK \bot \left( {SAB} \right)\).

Vậy \({O_1}S \bot \left( {SAB} \right)\), từ đó \({O_1}S \bot AB\)  và \({O_1}S \bot SA\).

Vì AB // CD, từ đó \({O_1}S \bot SA\) và \({O_1}S \bot C{\rm{D}}\)

Góc giữa hai mặt phẳng (A1B1O1) và (Q) chính là \(\widehat {{H_1}KH}\).

\(\tan \widehat {{H_1}KH} = {{H{H_1}} \over {HK}} = {{a\sqrt 3 } \over {4{\rm{a}}}} = {{\sqrt 3 } \over 4}\)

Góc giữa hai mặt phẳng (A1B1O1) và (P) chính là \(\widehat {H{H_1}K}\).

Ta có \(\tan \widehat {H{H_1}K} = {{HK} \over {H{H_1}}} = {a \over {{{a\sqrt 3 } \over 4}}} = {{4\sqrt 3 } \over 3}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved