Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hai đường thẳng a, b cắt nhau và không vuông góc với nhau, điểm O không nằm trên chúng. Hãy xác định điểm A nằm trên a và điểm B nằm trên b sao cho tam giác OAB vuông cân tại đỉnh O.
Lời giải chi tiết
Giả sử đã xác định được hai điểm A, B theo yêu cầu của Câu toán.
Vì \(\widehat {AOB} = {90^0}\) nên góc lượng giác \(\left( {\overrightarrow {OA} ,\overrightarrow {OB} } \right) = \pm {\pi \over 2}\).
Xét trường hợp \(\left( {\overrightarrow {OA} ,\overrightarrow {OB} } \right) = {\pi \over 2}\).
Gọi Q là phép quay tâm O với góc quay \({\pi \over 2}\) và a’ là ảnh của đường thẳng a qua phép Q. Vì Q biến điểm A thành điểm B nên B cũng nằm trên đường thẳng a’, nói cách khác B là giao điểm của a’ và b.
Vậy ta có cách xác định điểm B như sau: Xác định đường thẳng a’ là ảnh của đường thanwgr a qua phéo quay Q rồi lấy giao điểm B của a’ và n. (Chú ý rằng a’ vuông góc với a còn b không vuông góc với a bên a’ và b cắt nhau).
Để xác định điểm A ta vẽ đường thẳng c đi qua O và vuông góc OB thì c sẽ cắt a tại A. Vậy OAB là tam giác vuông cân cần tìm.
Đối với trường hợp \(\left( {\overrightarrow {OA} ,\overrightarrow {OB} } \right) = - {\pi \over 2}\) ta cũng làm tương tự và được tam giác vuông cân OA’B’ với A’ nằm trên a và B’ nằm trên b.
Bài toán có hai nghiệm hình.
Đề thi học kì 2
Chương 1. Sự điện li
CHƯƠNG II: DÒNG ĐIỆN KHÔNG ĐỔl
Phần một: Giáo dục kinh tế
Phần 1. Một số vấn đề về kinh tế - xã hội thế giới
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11