Đề bài
Cho tam giác \(ABC\) vuông cân ở \(A\) và \(AB = a\). Trên đường thẳng qua \(C\) và vuông góc với mặt phẳng \((ABC)\) lấy điểm \(D\) sao cho \(CD = a\). Mặt phẳng qua \(C\) vuông góc với \(BD\), cắt \(BD\) tại \(F\) và cắt \(AD\) tại \(E\). Tính thể tích khối tứ diện \(CDEF\) theo \(a\).
Phương pháp giải - Xem chi tiết
Bước 1: Dựng các điểm \(F\) và \(E.\)
Bước 2: Tìm chiều cao và đáy tương ứng: \({V_{CDEF}} = \dfrac{1}{3}DF.{S_{CEF}} \)
Bước 3: Chứng minh tam giác \(CEF\) vuông tại \(E \Rightarrow {S_{CEF}} = \dfrac{1}{2}EF.EC\)
Suy ra \({V_{CDEF}} = \dfrac{1}{3}DF.\dfrac{1}{2}EF.EC \)
Lời giải chi tiết
Ta có: \(BD \bot (CEF)\) hay \(DF \bot (CEF)\)do đó ta đã biết chiều cao của tứ diện \(DCEF.\)
Để tính thể tích tứ diện này, ta đi tính diện tích đáy tương ứng là \({S_{\Delta EFC}}\)
Dễ thấy: \(\Delta EFC\) vuông tại \(E,\) vì:
\(\left\{ \begin{array}{l}CE \bot DA\\CE \bot BD\;(do\;BD \bot (CEF))\end{array} \right. \Rightarrow CE \bot (BDA) \supset EF \Rightarrow CE \bot EF.\)
Vậy ta đi tính các cạnh \(CE, EF.\)
+) Tính \(CE\)
Do \(DC \bot (ABC)\) nên \(\Delta ACD\) vuông cân tại \(C.\)
\( \Rightarrow \) Chiều cao \(CE = \dfrac{{AC}}{{\sqrt 2 }} = \dfrac{{AB}}{{\sqrt 2 }} = \dfrac{a}{{\sqrt 2 }}\)
+) Tính \(EF\):
Xét vuông tại \(C\), ta có:
\(\begin{array}{l}\left\{ \begin{array}{l}DC = AC = a\\BC = AB.\sqrt 2 = a\sqrt 2 \end{array} \right. \Rightarrow BD = a\sqrt 3 \\ \text {Mà:}\;CF.BD = DC.BC\\ \Rightarrow CF = \dfrac{{DC.BC}}{{BD}} = \dfrac{{a.a\sqrt 2 }}{{a\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{3}.\\ \Rightarrow EF = \sqrt {C{F^2} - C{E^2}} = \sqrt {\dfrac{{2a}}{3} - \dfrac{a}{2}} = \dfrac{a}{{\sqrt 6 }} = \dfrac{{a\sqrt 6 }}{6}.\end{array}\)
Vậy \({S_{\Delta EFC}} = \dfrac{1}{2}CE.EF = \dfrac{1}{2}.\dfrac{a}{{\sqrt[{}]{2}}}.\dfrac{a}{{\sqrt 6 }} = \dfrac{{{a^2}}}{{4\sqrt 3 }} = \dfrac{{{a^2}\sqrt 3 }}{{12}}\)
+) Chiều cao \(DF\)
\(DF = \sqrt {D{C^2} - C{F^2}} = \sqrt {{a^2} - \dfrac{{2{a^2}}}{3}} = \dfrac{{a\sqrt 3 }}{3}\)
Vậy \({V_{CDEF}} = \dfrac{1}{3}DF.{S_{CEF}} \) \(= \dfrac{1}{3}. \dfrac{{a\sqrt 3 }}{3}.\dfrac{{{a^2}\sqrt 3 }}{{12}} = \dfrac{{{a^3}}}{{36}}\)
Bài 5. Quyền bình đẳng giữa các dân tộc, tôn giáo
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Địa lí lớp 12
Vấn đề sử dụng và bảo vệ tự nhiên
Chương 5. Di truyền học người
Unit 6: Future Jobs - Việc Làm Tương Lai