Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Cho hai phép vị tự V1 có tâm O1 tỉ số k1 và V2 có tâm O2 tỉ số k2. Gọi F là hợp thành của V1 và V2. Chứng minh rằng:
LG a
LG a
F là một phép tịnh tiến nếu k1k2 = 1. Hãy xác định vec tơ tịnh tiến.
Lời giải chi tiết:
Lấy một điểm M bất kỳ, nếu V1 biến M thành M1 và V2 biến M1 thành M2 thì \(\overrightarrow {{O_1}{M_1}} = {k_1}\overrightarrow {{O_1}M} \) và \(\overrightarrow {{O_2}{M_2}} = {k_2}\overrightarrow {{O_2}{M_1}} \).
Khi đó, phép hợp thành F biến M thành M2. Gọi I là ảnh của O1 qua phép vị tự V2, tức là \(\overrightarrow {{O_2}I} = {k_2}\overrightarrow {{O_2}{O_1}} \).
Khi đó \(\overrightarrow {I{M_2}} = {k_2}\overrightarrow {{O_1}{M_1}} = {k_1}{k_2}\overrightarrow {{O_1}M} \).
(h.33)
Nếu k1k2 = 1 thì \(\overrightarrow {I{M_2}} = \overrightarrow {{O_1}M} \) nên \(\overrightarrow {M{M_2}} = \overrightarrow {{O_1}I} = \overrightarrow {{O_1}{O_2}} + \overrightarrow {{O_2}I} = \left( {1 - {k_2}} \right)\overrightarrow {{O_1}{O_2}} \).
Vậy trong trường hợp này F là phép tịnh tiến vectơ \(\overrightarrow u = \left( {1 - {k_2}} \right)\overrightarrow {{O_1}{O_2}} \).
LG b
LG b
F là một phép vị tự nếu k1k2 1. Hãy xác định tâm và tỉ số của phép vị tự đó.
Lời giải chi tiết:
Nếu k1k2 \(\ne\) 1 ta chọn điểm O3 sao cho \(\overrightarrow {{O_3}I} = {k_1}{k_2}\overrightarrow {{O_3}{O_1}} \)
Khi đó \(\overrightarrow {{O_3}{M_2}} = \overrightarrow {{O_3}I} + \overrightarrow {I{M_2}} \)
\( = {k_1}{k_2}\overrightarrow {{O_3}{O_1}} + {k_1}{k_2}\overrightarrow {{O_1}M} \)
\( = {k_1}{k_2}\overrightarrow {{O_3}M} \)
Vậy F là phép vị tự tâm O3 tỉ số \({k_1}{k_2}\).
Chú ý rằng tâm O3 của phép vị tự đó được xác định bởi đẳng thức:
\(\overrightarrow {{O_3}I} = {k_1}{k_2}\overrightarrow {{O_3}{O_1}} \)
Hay \(\overrightarrow {{O_3}{O_1}} + \overrightarrow {{O_1}{O_2}} + \overrightarrow {{O_2}I} = {k_1}{k_2}\overrightarrow {{O_3}{O_1}} \).
Suy ra: \(\overrightarrow {{O_1}{O_2}} + {k_2}\overrightarrow {{O_2}{O_1}} = \left( {1 - {k_1}{k_2}} \right)\overrightarrow {{O_1}{O_3}} \).
Do đó: \(\overrightarrow {{O_1}{O_3}} = {{1 - {k_2}} \over {1 - {k_1}{k_2}}}\overrightarrow {{O_1}{O_2}} \).
Cũng chú ý rằng tâm của ba phép vị tự V1, V2 và F là ba điểm thẳng hàng O1, O2 và O3.
SGK Toán 11 - Chân trời sáng tạo tập 1
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Lịch sử lớp 11
Chương 4: Hydrocarbon
Chủ đề 3: Kĩ thuật nhảy ném rổ và chiến thuật tấn công trong bóng rổ
Chương 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11