Bài 54 trang 14 SBT Hình Học 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho hai phép vị tự V1 có tâm O1 tỉ số k1 và V2 có tâm O2 tỉ số k2. Gọi F là hợp thành của V1 và V2. Chứng minh rằng:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

F là một phép tịnh tiến nếu k1k2 = 1. Hãy xác định vec tơ tịnh tiến.

Lời giải chi tiết:

Lấy một điểm M bất kỳ, nếu V1 biến M thành M1 và V2 biến M1 thành M2 thì \(\overrightarrow {{O_1}{M_1}}  = {k_1}\overrightarrow {{O_1}M} \) và \(\overrightarrow {{O_2}{M_2}}  = {k_2}\overrightarrow {{O_2}{M_1}} \).

Khi đó, phép hợp thành F biến M thành M2. Gọi I là ảnh của O1 qua phép vị tự V2, tức là \(\overrightarrow {{O_2}I}  = {k_2}\overrightarrow {{O_2}{O_1}} \).

Khi đó \(\overrightarrow {I{M_2}}  = {k_2}\overrightarrow {{O_1}{M_1}}  = {k_1}{k_2}\overrightarrow {{O_1}M} \).

(h.33)

Nếu k1k2 = 1 thì \(\overrightarrow {I{M_2}}  = \overrightarrow {{O_1}M} \) nên \(\overrightarrow {M{M_2}}  = \overrightarrow {{O_1}I}  = \overrightarrow {{O_1}{O_2}}  + \overrightarrow {{O_2}I}  = \left( {1 - {k_2}} \right)\overrightarrow {{O_1}{O_2}} \).

Vậy trong trường hợp này F là phép tịnh tiến vectơ \(\overrightarrow u  = \left( {1 - {k_2}} \right)\overrightarrow {{O_1}{O_2}} \).

 

LG b

LG b

F là một phép vị tự nếu k1k2 1. Hãy xác định tâm và tỉ số của phép vị tự đó.

Lời giải chi tiết:

Nếu k1k2 \(\ne\) 1 ta chọn điểm O3 sao cho \(\overrightarrow {{O_3}I}  = {k_1}{k_2}\overrightarrow {{O_3}{O_1}} \)

Khi đó \(\overrightarrow {{O_3}{M_2}}  = \overrightarrow {{O_3}I}  + \overrightarrow {I{M_2}} \)

\( = {k_1}{k_2}\overrightarrow {{O_3}{O_1}}  + {k_1}{k_2}\overrightarrow {{O_1}M} \)

\( = {k_1}{k_2}\overrightarrow {{O_3}M} \)

Vậy F là phép vị tự tâm O3 tỉ số \({k_1}{k_2}\).

Chú ý rằng tâm O3 của phép vị tự đó được xác định bởi đẳng thức:

\(\overrightarrow {{O_3}I}  = {k_1}{k_2}\overrightarrow {{O_3}{O_1}} \)

Hay \(\overrightarrow {{O_3}{O_1}}  + \overrightarrow {{O_1}{O_2}}  + \overrightarrow {{O_2}I}  = {k_1}{k_2}\overrightarrow {{O_3}{O_1}} \).

Suy ra: \(\overrightarrow {{O_1}{O_2}}  + {k_2}\overrightarrow {{O_2}{O_1}}  = \left( {1 - {k_1}{k_2}} \right)\overrightarrow {{O_1}{O_3}} \).

Do đó: \(\overrightarrow {{O_1}{O_3}}  = {{1 - {k_2}} \over {1 - {k_1}{k_2}}}\overrightarrow {{O_1}{O_2}} \).

Cũng chú ý rằng tâm của ba phép vị tự V1, V2 và F là ba điểm thẳng hàng O1, O2 và O3.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved