Cho hàm số
\(f\left( x \right) = \left\{ \matrix{{x^2}\,\,\,\,\,khi\,\,\,x \ge 0 \hfill \cr - {x^3} + bx + c\,\,\,khi\,\,x > 0 \hfill \cr} \right.\)
LG a
LG a
Tìm điều kiện của b và c để \(f\left( x \right)\) liên tục tại \({x_0} = 0\)
Lời giải chi tiết:
Hàm số liên tục tại điểm \(x = 0\) nếu \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right)\) hay
\(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = f\left( 0 \right)\)
ta có
\(\eqalign{& \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} {x^2} = 0 \cr& \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( { - {x^3} + bx + c} \right) = c \cr& f\left( 0 \right) = {0^2} = 0 \cr} \)
Vậy hàm số liên tục tại điểm \(x = 0\) nếu \(c = 0\) còn b tùy ý.
LG b
LG b
Xác định b và c để \(f\left( x \right)\) có đạo hàm tại \({x_0} = 0\) và tính \(f'\left( 0 \right)\)
Lời giải chi tiết:
Hàm số có đạo hàm tại điểm \(x = 0\) thì nó liên tục tại điểm đó ( suy ra \(c = 0\)) và có giới hạn hữu hạn
\(\mathop {\lim }\limits_{x \to 0} {{f\left( x \right) - f\left( 0 \right)} \over {x - 0}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)
Ta có
\(\eqalign{& \mathop {\lim }\limits_{x \to {0^ - }} {{f\left( x \right) - f\left( 0 \right)} \over {x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} {{f\left( x \right)} \over x} = \mathop {\lim }\limits_{x \to {0^ - }} {{{x^2}} \over x}\cr& = \mathop {\lim }\limits_{x \to {0^ - }} x = 0 \cr& \mathop {\lim }\limits_{x \to {0^ + }} {{f\left( x \right) - f\left( 0 \right)} \over {x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} {{f\left( x \right)} \over x} \cr&= \mathop {\lim }\limits_{x \to {0^ + }} {{ - {x^3} + bx} \over x} \cr& = \mathop {\lim }\limits_{x \to {0^ + }} \left( { - {x^2}} \right) + \mathop {\lim }\limits_{x \to {0^ + }} b = b \cr} \)
Để tồn tại giới hạn hữu hạn (1) thì ta phải có
\(\mathop {\lim }\limits_{x \to {0^ - }} {{f\left( x \right) - f\left( 0 \right)} \over {x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} {{f\left( x \right) - f\left( 0 \right)} \over {x - 0}}\)
Suy ra \(b = 0\)
Vậy hàm số có đạo hàm tại \(x = 0\) khi và chỉ khi \(b = c = 0\). Khi đó, ta có \(f'\left( 0 \right) = 0\)
Tải 20 đề kiểm tra 15 phút - Chương 2
Chuyên đề 2: Chiến tranh và hòa bình trong thế kỉ XX
SBT Ngữ văn 11 - Kết nối tri thức tập 2
Chuyên đề 2. Một số vấn đề về du lịch thế giới
Unit 5: Cities and education in the future
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11