Đề bài
Tìm a để tồn tại hàm số:
\(f\left( x \right) = 4{x^3} - 6{x^2}\cos 2a + 3x\sin 2a\sin 6a\)
\(+ \sqrt {2a - 1 - {a^2}} \) (a là hằng số)
Với giá trị của số a đó, hãy xét dấu của \(f'\left( {{1 \over 2}} \right)\)
Lời giải chi tiết
Ta nhận thấy
\(2a - 1 - {a^2} \ge 0 \Leftrightarrow {\left( {a - 1} \right)^2} \le 0 \Leftrightarrow a = 1\)
Vậy :
\( \bullet \) Khi \(a \ne 1\) thì không tồn tại hàm số \(f\left( x \right)\) với bất kì \(x \in R\), do đó không tồn tại \(f'\left( {{1 \over 2}} \right).\)
\( \bullet \) Khi \(a = 1\) thì tồn tại hàm số \(f\left( x \right)\) xác định với mọi \(x \in R\) và
\(f\left( x \right) = 4{x^3} - 6{x^2}\cos 2 + 3x\sin 2\sin 6\)
Ta có \(f'\left( x \right) = 12{x^2} - 12\cos 2 + 3x\sin 2\sin 6\)
\(f'\left( {{1 \over 2}} \right) = 3 - 6\cos 2 + 3\sin 2\sin 6\)
\(= 3\left( {1 - 2\cos 2 + \sin 2\sin 6} \right)\)
Vì \({\pi \over 2} < 2 < \pi \) nên \(\cos 2 < 0\), suy ra
\(1 - 2\cos 2 > 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)
Mặt khác \(\left| {\sin 2\sin 6} \right| \le 1,\) suy ra
\(\sin 2\sin 6 \ge - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra
\(1 - 2\cos 2 + \sin 2\sin 6 > 0 \Leftrightarrow f'\left( {{1 \over 2}} \right) > 0\)
Unit 9: Social issues
Chương I. Dao động
Chương VII. Ô tô
Chuyên đề III. Một số yếu tố vẽ kĩ thuật
Chuyên đề II. Truyền thông tin bằng sóng vô tuyến
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11