ĐẠI SỐ VÀ GIẢI TÍCH - SBT TOÁN 11 NÂNG CAO

Câu 5.44 trang 186 sách bài tập Đại số và Giải tích 11 Nâng cao

Đề bài

Tìm a để tồn tại hàm số:

\(f\left( x \right) = 4{x^3} - 6{x^2}\cos 2a + 3x\sin 2a\sin 6a\)

\(+ \sqrt {2a - 1 - {a^2}} \) (a là hằng số)

Với giá trị của số a đó, hãy xét dấu của \(f'\left( {{1 \over 2}} \right)\)

Lời giải chi tiết

Ta nhận thấy

                        \(2a - 1 - {a^2} \ge 0 \Leftrightarrow {\left( {a - 1} \right)^2} \le 0 \Leftrightarrow a = 1\)

Vậy :

\( \bullet \) Khi \(a \ne 1\) thì không tồn tại hàm số \(f\left( x \right)\) với bất kì \(x \in R\), do đó không tồn tại \(f'\left( {{1 \over 2}} \right).\)

\( \bullet \) Khi \(a = 1\) thì tồn tại hàm số \(f\left( x \right)\) xác định với mọi \(x \in R\) và

            \(f\left( x \right) = 4{x^3} - 6{x^2}\cos 2 + 3x\sin 2\sin 6\)

Ta có   \(f'\left( x \right) = 12{x^2} - 12\cos 2 + 3x\sin 2\sin 6\)

\(f'\left( {{1 \over 2}} \right) = 3 - 6\cos 2 + 3\sin 2\sin 6\)

              \(= 3\left( {1 - 2\cos 2 + \sin 2\sin 6} \right)\)

Vì \({\pi  \over 2} < 2 < \pi \) nên \(\cos 2 < 0\), suy ra

\(1 - 2\cos 2 > 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)

Mặt khác \(\left| {\sin 2\sin 6} \right| \le 1,\)  suy ra

\(\sin 2\sin 6 \ge  - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)

Từ (1) và (2) suy ra

\(1 - 2\cos 2 + \sin 2\sin 6 > 0 \Leftrightarrow f'\left( {{1 \over 2}} \right) > 0\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved