Một viên đạn được bắn lên trời từ một vị trí cách mặt đất 1000m theo phương thẳng đứng với vận tốc ban đầu \({v_0} = 245m/s\) (bỏ qua sức cản không khí) .
LG a
Tìm thời điểm \({t_0}\) tại đó viên đạn đạt tốc độ cao nhất và sẽ bắt đầu rơi. Khi đó viên đạn cách mặt đất bao nhiêu mét?
Lời giải chi tiết:
Chọn Oy theo phương thẳng đứng, chiều dương hướng từ mặt đất lên trời, gốc O ở mặt đất và A là vị trí viên đạn được bắn lên, gốc thời gian (từ lúc t = 0) được tính từ vị trí A (h.5.3); khi đó chuyển động của viên đạn là chuyển động biến đổi với vận tốc ban đầu và với gia tốc \(g = - 9,8\,\,m/{s^2}\). (Gia tốc nhận giá trị âm vì vecto gia tốc ngược chiều dương của trục Oy). Phương trình chuyển động của viên đạn là
\(y = 1000 + 245t - 4,9{t^2}\)
Ta có \(v\left( t \right) = y' = 245 - 9,8t\)
Viên đạn đạt độ cao lớn nhất và sẽ bắt đầu rơi khi
\(v\left( t \right) = 0 \Leftrightarrow 245 - 9,8t = 0 \Leftrightarrow t = 25\,\,\left( s \right)\)
Khi đó viên đạn cách mặt đất là
\(y\left( {25} \right) = 1000 + 245.25 - 4,{9.25^2} = 4062,5\,\,\left( m \right)\)
LG b
Sau bao nhiêu giây (kể từ lúc bắn), viên đạn rơi xuống mặt đất?
Lời giải chi tiết:
Viên đạn rơi đến đất khi \(y = 0\). Vậy nếu gọi \({t_1}\) là thời gian kể từ khi viên đạn được bắn lên trời đến khi nó rơi tới đất thì \({t_1}\) phải là nghiệm dương của phương trình.
\(0 = 1000 + 245t - 4,9{t^2} \Leftrightarrow {t_1} = 54\,\,\left( s \right)\)
Chuyên đề 3: Một số yếu tố vẽ kĩ thuật
Chủ đề 2: Giao cầu
ĐỀ CƯƠNG HỌC KÌ 1 - SINH 11
Phần hai: Giáo dục pháp luật
Chương 1: Dao động
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11