ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Câu 6 trang 142 SGK Đại số và giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
Câu 2

Cho hai hàm số \(f(x) = {{1 - {x^2}} \over {{x^2}}}\) và \(g(x) = {{{x^3} + {x^2} + 1} \over {{x^2}}}\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
Câu 2

LG a

Tính \(\mathop {\lim }\limits_{x \to 0} f(x);\mathop {\lim }\limits_{x \to 0} g(x);\mathop {\lim }\limits_{x \to  + \infty } f(x);\mathop {\lim }\limits_{x \to  + \infty } g(x)\)

Phương pháp giải:

+) Tính giới hạn khi \(x\) tiến đến 0: Đánh giá giới hạn \(\frac{L}{0}\)

+) Tính giới hạn khi \(x\) tiến ra vô cùng: Chia cả tử và mẫu cho \(x\) mũ bậc cao nhất của cả tử và mẫu.

Lời giải chi tiết:

+)  \(\mathop {\lim }\limits_{x \to 0} f(x) = \mathop {\lim }\limits_{x \to 0} {{1 - {x^2}} \over {{x^2}}} =  + \infty \)

Vì: \(\mathop {\lim }\limits_{x \to 0} (1 - {x^2}) = 1 > 0,\)

     \(\mathop {\lim }\limits_{x \to 0} {x^2} = 0;{x^2} > 0,\forall x \ne 0\)

+)  \(\mathop {\lim }\limits_{x \to 0} g(x) = \mathop {\lim }\limits_{x \to 0} {{{x^3} + {x^2} + 1} \over {{x^2}}} =  + \infty \)

Vì: \(\mathop {\lim }\limits_{x \to 0} ({x^3} + {x^2} + 1) = 1 > 0,\mathop {\lim }\limits_{x \to 0} {x^2} = 0,{x^2} > 0,\) \(\forall x \ne 0\)

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } f(x) = \mathop {\lim }\limits_{x \to + \infty } {{1 - {x^2}} \over {{x^2}}} \cr 
& = \mathop {\lim }\limits_{x \to + \infty } {{{x^2}({1 \over {{x^2}}} - 1)} \over {{x^2}}} = \mathop {\lim }\limits_{x \to + \infty } ({1 \over {{x^2}}} - 1) = - 1 \cr} \) 

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } g(x) = \mathop {\lim }\limits_{x \to + \infty } {{{x^3} + {x^2} + 1} \over {{x^2}}} \cr&= \mathop {\lim }\limits_{x \to + \infty } {{{x^3}(1 + {1 \over x} + {1 \over {{x^3}}})} \over {{x^3}({1 \over x})}} \cr 
& = \mathop {\lim }\limits_{x \to + \infty } {{1 + {1 \over x} + {1 \over {{x^3}}}} \over {{1 \over x}}} = + \infty \cr} \)

Câu 2

Hai đường cong sau đây (h.60) là đồ thị của hai hàm số đã cho. Từ kết quả câu a), hãy xác định xem đường cong nào là đồ thị của mỗi hàm số đó.

Phương pháp giải:

+) Tính giới hạn khi \(x\) tiến đến 0: Đánh giá giới hạn \(\frac{L}{0}\)

+) Tính giới hạn khi \(x\) tiến ra vô cùng: Chia cả tử và mẫu cho \(x\) mũ bậc cao nhất của cả tử và mẫu.

Lời giải chi tiết:

Gọi \((C_1)\) và \((C_2)\) lần lượt là hai đồ thị của hàm số \(y = f(x)\) và \(y = g(x)\)

+)  Vì \(\mathop {\lim }\limits_{x \to  + \infty } f(x) =  - 1\) nên \((C_1)\) có nhánh vô tận tiến gần đến đường thẳng \(y = -1\) \(khi x \rightarrow  ∞\)

+)  Vì \(\mathop {\lim }\limits_{x \to  + \infty } g(x) =  + \infty \) \((C_2)\) có nhánh vô tận đi lên khi \(x \rightarrow +∞\)

Dựa vào đặc điểm của \((C_1)\) và \((C_2)\)  như trên ta có\((C_1)\)  là đồ thị b và \((C_2)\)  là đồ thị a.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved