Đề bài
Cho \(\displaystyle {f_1}\left( x \right) = {{\cos x} \over x};{f_2}\left( x \right) = x\sin x\)
Tính \(\displaystyle {{{f_1}'(1)} \over {{f_2}'(1)}}\)
Phương pháp giải - Xem chi tiết
Tính \(f_1'\left( 1 \right);\,\,f_2'\left( 1 \right)\) sau đó tính thương.
Lời giải chi tiết
Ta có:
\(\begin{array}{l}
{f_1}'\left( x \right) = \dfrac{{\left( {\cos x} \right)'.x - x'\cos x}}{{{x^2}}}\\= \dfrac{{ - x\sin x - \cos x}}{{{x^2}}}\\
\Rightarrow {f_1}'\left( 1 \right) = \dfrac{{ - 1.\sin 1 - \cos 1}}{1} \\= - \sin 1 - \cos 1\\
{f_2}'\left( x \right) = x'\sin x + x\left( {\sin x} \right)'\\= \sin x + x\cos x\\
\Rightarrow {f_2}'\left( 1 \right) = \sin 1 + \cos 1\\
\Rightarrow \dfrac{{{f_1}'\left( 1 \right)}}{{{f_2}'\left( 1 \right)}} = \dfrac{{ - \sin 1 - \cos 1}}{{\sin 1 + \cos 1}} \\ = \dfrac{{ - \left( {\sin 1 + \cos 1} \right)}}{{\sin 1 + \cos 1}}= - 1
\end{array}\)
Tải 10 đề kiểm tra 1 tiết - Chương 1
Câu hỏi tự luyện Sử 11
CHƯƠNG VI - KHÚC XẠ ÁNH SÁNG
Bài 10. Kĩ thuật sử dụng lựu đạn
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương VI - Hóa học 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11