ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Câu 8 trang 177 SGK Đại số và giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Cho chuyển động thẳng xác định bởi phương trình \(S = t^3- 3t^2– 9t\), trong đó \(t\) được tính bằng giây và \(S\) được tính bằng mét.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

Tính vận tốc của chuyển động khi \(t = 2s\)

Phương pháp giải:

Sử dụng công thức \(v(t)=S'(t)\), \(a(t)=v'(t)\).

Lời giải chi tiết:

Vận tốc của chuyển động khi \(t = 2\) (s).

Ta có: \(v = S' = 3{t^2} - 6t - 9\)

Khi \(t = 2(s) ⇒ v(2)=3.2^2– 6.2 – 9 = -9 m/s\).

LG b

Tính gia tốc của chuyển động khi \(t = 3s\)

Phương pháp giải:

Sử dụng công thức \(v(t)=S'(t)\), \(a(t)=v'(t)\).

Lời giải chi tiết:

Gia tốc của chuyển động khi \(t = 3(s)\). Ta có: \(a = v' = 6t - 6\)

Khi \(t = 3(s) ⇒ a(3) = 6.3 – 6 = 12 m/s^2\)

LG c

Tính gia tốc tại thời điểm vận tốc triệt tiêu.

Phương pháp giải:

Sử dụng công thức \(v(t)=S'(t)\), \(a(t)=v'(t)\).

Lời giải chi tiết:

Ta có: \(v = 3t^2– 6t – 9\)

Tại thời điểm vận tốc triệt tiêu:

\(\eqalign{
& v = 0 \Leftrightarrow 3{t^2} - 6t - 9 = 0 \Leftrightarrow {t^2} - 2t - 3 = 0 \cr 
& \Leftrightarrow \left[ \matrix{
t = - 1(l) \hfill \cr 
t = 3(s) \hfill \cr} \right. \cr} \) 

Khi \(t = 3 \Rightarrow a\left( 3 \right) = 6.3 - 6 = 12\,\,\left( {m/{s^2}} \right)\)

LG d

Tính vận tốc tại thời điểm gia tốc bị triệt tiêu.

Phương pháp giải:

Sử dụng công thức \(v(t)=S'(t)\), \(a(t)=v'(t)\).

Lời giải chi tiết:

Gia tốc: \(a = 6t – 6\)

Khi \(a = 0 ⇔ 6t – 6= 0 ⇔ t = 1(s)\)

Khi \(t = 1(s) ⇒ v(1) = 3.1^2– 6.1 – 9 = -12 m/s\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved