Cho chuyển động thẳng xác định bởi phương trình \(S = t^3- 3t^2– 9t\), trong đó \(t\) được tính bằng giây và \(S\) được tính bằng mét.
LG a
Tính vận tốc của chuyển động khi \(t = 2s\)
Phương pháp giải:
Sử dụng công thức \(v(t)=S'(t)\), \(a(t)=v'(t)\).
Lời giải chi tiết:
Vận tốc của chuyển động khi \(t = 2\) (s).
Ta có: \(v = S' = 3{t^2} - 6t - 9\)
Khi \(t = 2(s) ⇒ v(2)=3.2^2– 6.2 – 9 = -9 m/s\).
LG b
Tính gia tốc của chuyển động khi \(t = 3s\)
Phương pháp giải:
Sử dụng công thức \(v(t)=S'(t)\), \(a(t)=v'(t)\).
Lời giải chi tiết:
Gia tốc của chuyển động khi \(t = 3(s)\). Ta có: \(a = v' = 6t - 6\)
Khi \(t = 3(s) ⇒ a(3) = 6.3 – 6 = 12 m/s^2\)
LG c
Tính gia tốc tại thời điểm vận tốc triệt tiêu.
Phương pháp giải:
Sử dụng công thức \(v(t)=S'(t)\), \(a(t)=v'(t)\).
Lời giải chi tiết:
Ta có: \(v = 3t^2– 6t – 9\)
Tại thời điểm vận tốc triệt tiêu:
\(\eqalign{
& v = 0 \Leftrightarrow 3{t^2} - 6t - 9 = 0 \Leftrightarrow {t^2} - 2t - 3 = 0 \cr
& \Leftrightarrow \left[ \matrix{
t = - 1(l) \hfill \cr
t = 3(s) \hfill \cr} \right. \cr} \)
Khi \(t = 3 \Rightarrow a\left( 3 \right) = 6.3 - 6 = 12\,\,\left( {m/{s^2}} \right)\)
LG d
Tính vận tốc tại thời điểm gia tốc bị triệt tiêu.
Phương pháp giải:
Sử dụng công thức \(v(t)=S'(t)\), \(a(t)=v'(t)\).
Lời giải chi tiết:
Gia tốc: \(a = 6t – 6\)
Khi \(a = 0 ⇔ 6t – 6= 0 ⇔ t = 1(s)\)
Khi \(t = 1(s) ⇒ v(1) = 3.1^2– 6.1 – 9 = -12 m/s\)
Chủ đề 1: Vai trò, tác dụng của môn bóng rổ đối với sự phát triển thể chất - các tình huống được phát bóng biên và ném phạt trong thi đấu môn bóng rổ
Chủ đề 5. Hoạt động phát triển cộng đồng
Chủ đề 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
Unit 9: The Post Office - Bưu điện
Chuyên đề 2. Chiến tranh và hòa bình trong thế kỉ XX
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11