Đề bài
Cho hai hàm số: \(y = {1 \over {x\sqrt 2 }};y = {{{x^2}} \over {\sqrt 2 }}\) . Viết phương trình tiếp tuyến với đồ thị của mỗi hàm số đã cho tại giao điểm của chúng. Tính góc giữa hai tiếp tuyến kể trên.
Phương pháp giải - Xem chi tiết
+) Giải phương trình hoành độ giao điểm, xác định hoành độ giao điểm.
+) Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x_0\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).
+) Nhận xét về các hệ số góc của hai tiếp tuyến trên.
Lời giải chi tiết
\({C_1}:y = f(x) = {1 \over {x\sqrt 2 }} \Rightarrow f'(x) = - {1 \over {{x^2}\sqrt 2 }}\)
\({C_2}:y = g(x) = {{{x^2}} \over {\sqrt 2 }} \Rightarrow g'(x) = {{2x} \over {\sqrt 2 }} = x\sqrt 2 \)
Phương trình hoành độ giao điểm của \({C_1}\) và \({C_2}\) là:
\({1 \over {x\sqrt 2 }} = {{{x^2}} \over {\sqrt 2 }} \Leftrightarrow \left\{ \matrix{
x \ne 0 \hfill \cr
{x^3} = 1 \hfill \cr} \right. \Leftrightarrow x = 1 \Rightarrow y = {1 \over {\sqrt 2 }} = {{\sqrt 2 } \over 2}\)
Vậy giao điểm của \({C_1}\) và \({C_2}\) là \(A(1,{{\sqrt 2 } \over 2})\)
+) Phương trình tiếp tuyến của \({C_1}\) tại điểm A là:
\(\eqalign{
& y - {{\sqrt 2 } \over 2} = f'(1)(x - 1) \cr&\Leftrightarrow y - {{\sqrt 2 } \over 2} = - {1 \over {\sqrt 2 }}(x - 1) \cr
& \Leftrightarrow y = - {x \over {\sqrt 2 }} + \sqrt 2 \cr} \)
Tiếp tuyến này có hệ số góc \(k_1= {{ - 1} \over {\sqrt 2 }}\)
+) Phương trình tiếp tuyến của \({C_2}\) tại điểm \(A\) là:
\(\eqalign{
& y - {{\sqrt 2 } \over 2} = g'(1)(x - 1) \Leftrightarrow y - {{\sqrt 2 } \over 2} = \sqrt 2 (x - 1) \cr
& \Leftrightarrow y = x\sqrt 2 - {{\sqrt 2 } \over 2} \cr} \)
Tiếp tuyến này có hệ số góc \(k_2= \sqrt 2\)
+) Ta có: \({k_1}.{k_2} = ( - {1 \over {\sqrt 2 }})(\sqrt 2 ) = - 1\)
⇒ Hai tiếp tuyến nói trên vuông góc với nhau
⇒ góc giữa hai tiếp tuyến bằng \(90^0\).
PHẦN BA. LỊCH SỬ VIỆT NAM (1858 - 1918)
CHƯƠNG II. DÒNG ĐIỆN KHÔNG ĐỔI
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Lịch sử lớp 11
Chuyên đề 2. Một số vấn đề về du lịch thế giới
Chủ đề 4. Sản xuất cơ khí
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11